Suppr超能文献

利用大脑的宏观和微观结构变化,通过磁共振成像(MRI)数据改进帕金森病的分类。

Exploiting macro- and micro-structural brain changes for improved Parkinson's disease classification from MRI data.

作者信息

Camacho Milton, Wilms Matthias, Almgren Hannes, Amador Kimberly, Camicioli Richard, Ismail Zahinoor, Monchi Oury, Forkert Nils D

机构信息

Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada.

Department of Radiology, University of Calgary, Calgary, AB, Canada.

出版信息

NPJ Parkinsons Dis. 2024 Feb 26;10(1):43. doi: 10.1038/s41531-024-00647-9.

Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disease. Accurate PD diagnosis is crucial for effective treatment and prognosis but can be challenging, especially at early disease stages. This study aimed to develop and evaluate an explainable deep learning model for PD classification from multimodal neuroimaging data. The model was trained using one of the largest collections of T1-weighted and diffusion-tensor magnetic resonance imaging (MRI) datasets. A total of 1264 datasets from eight different studies were collected, including 611 PD patients and 653 healthy controls (HC). These datasets were pre-processed and non-linearly registered to the MNI PD25 atlas. Six imaging maps describing the macro- and micro-structural integrity of brain tissues complemented with age and sex parameters were used to train a convolutional neural network (CNN) to classify PD/HC subjects. Explainability of the model's decision-making was achieved using SmoothGrad saliency maps, highlighting important brain regions. The CNN was trained using a 75%/10%/15% train/validation/test split stratified by diagnosis, sex, age, and study, achieving a ROC-AUC of 0.89, accuracy of 80.8%, specificity of 82.4%, and sensitivity of 79.1% on the test set. Saliency maps revealed that diffusion tensor imaging data, especially fractional anisotropy, was more important for the classification than T1-weighted data, highlighting subcortical regions such as the brainstem, thalamus, amygdala, hippocampus, and cortical areas. The proposed model, trained on a large multimodal MRI database, can classify PD patients and HC subjects with high accuracy and clinically reasonable explanations, suggesting that micro-structural brain changes play an essential role in the disease course.

摘要

帕金森病(PD)是第二常见的神经退行性疾病。准确的PD诊断对于有效治疗和预后至关重要,但可能具有挑战性,尤其是在疾病早期阶段。本研究旨在开发和评估一种可解释的深度学习模型,用于从多模态神经影像数据中进行PD分类。该模型使用了最大的T1加权和扩散张量磁共振成像(MRI)数据集之一进行训练。总共收集了来自八项不同研究的1264个数据集,包括611名PD患者和653名健康对照(HC)。这些数据集经过预处理并非线性配准到MNI PD25图谱。使用描述脑组织宏观和微观结构完整性并补充年龄和性别参数的六张影像图来训练卷积神经网络(CNN),以对PD/HC受试者进行分类。通过使用SmoothGrad显著性图来实现模型决策的可解释性,突出重要的脑区。CNN使用按诊断、性别、年龄和研究分层的75%/10%/15%训练/验证/测试分割进行训练,在测试集上的受试者工作特征曲线下面积(ROC-AUC)为0.89,准确率为80.8%,特异性为82.4%,敏感性为79.1%。显著性图显示,扩散张量成像数据,尤其是分数各向异性,对分类比T1加权数据更重要,突出了脑干、丘脑、杏仁核、海马体等皮质下区域以及皮质区域。在大型多模态MRI数据库上训练的所提出模型能够以高精度和临床合理的解释对PD患者和HC受试者进行分类,表明脑微观结构变化在疾病进程中起重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9a4/10897162/e41ecc410be3/41531_2024_647_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验