Suppr超能文献

雨滴对叶片的影响:茸毛和弹性的作用。

The impact of raindrops on leaves: effects of trichomes and elasticity.

机构信息

Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany.

Institute of Botany, Technical University of Dresden, Zellescher Weg 20b, Dresden 01217, Germany.

出版信息

J R Soc Interface. 2021 Dec;18(185):20210676. doi: 10.1098/rsif.2021.0676. Epub 2021 Dec 15.

Abstract

The floating leaves of the aquatic fern are covered by superhydrophobic hairs (=trichomes) which are shaped like egg-beaters. These trichomes cause high water repellency and stable unwettability if the leaf is immersed. Whereas hairs are technically interesting, there remains also the question concerning their biological relevance. has its origin in Brazil within a region exposed to intense rainfall which easily penetrates the trichome cover. In this study, drop impact on leaves of were analysed using a high-speed camera. The largest portion of the kinetic energy of a rain drop is absorbed by elastic responses of the trichomes and the leaf. Although rain water is mostly repelled, it turned out that the trichomes hamper swift shedding of rain water and some residual water can remain below the 'egg-beaters'. Drops rolling over the trichomes can, however, 'suck up' water trapped beneath the egg-beaters because the energetic state of a drop on top of the trichomes is-on account of the superhydrophobicity of the hairs-much more favourable. The trichomes may therefore be beneficial during intense rainfall, because they absorb some kinetic energy and keep the leaf base mostly free from water.

摘要

水生蕨类植物的漂浮叶片被超疏水的毛发(=刚毛)覆盖,这些毛发的形状像打蛋器。如果叶片浸入水中,这些刚毛会导致高的水斥力和稳定的不湿性。虽然毛发在技术上很有趣,但它们的生物学相关性仍然存在疑问。 起源于巴西的一个地区,该地区经常遭受强降雨的侵袭,强降雨很容易穿透刚毛覆盖层。在这项研究中,使用高速摄像机分析了雨滴对 的叶片的冲击。雨滴的大部分动能被刚毛和叶片的弹性响应吸收。尽管雨水大部分被排斥,但事实证明,这些刚毛阻碍了雨水的迅速排出,一些残留的水可能会留在“打蛋器”下面。然而,在刚毛上滚动的液滴可以“吸起”被困在打蛋器下面的水,因为处于刚毛顶部的液滴的能量状态——由于毛发的超疏水性——要有利得多。因此,在强降雨期间,刚毛可能是有益的,因为它们吸收了一些动能,并使叶片基部大部分保持无水状态。

相似文献

1
The impact of raindrops on leaves: effects of trichomes and elasticity.
J R Soc Interface. 2021 Dec;18(185):20210676. doi: 10.1098/rsif.2021.0676. Epub 2021 Dec 15.
3
Microstructures of superhydrophobic plant leaves - inspiration for efficient oil spill cleanup materials.
Bioinspir Biomim. 2016 Aug 16;11(5):056003. doi: 10.1088/1748-3190/11/5/056003.
4
Endocide-Induced Abnormal Growth Forms of Invasive Giant Salvinia (Salvinia molesta).
Sci Rep. 2018 May 22;8(1):8006. doi: 10.1038/s41598-018-25986-5.
5
When rain collides with plants-patterns and forces of drop impact and how leaves respond to them.
J Exp Bot. 2022 Feb 24;73(4):1155-1175. doi: 10.1093/jxb/erac004.
7
Superrepellency of underwater hierarchical structures on leaf.
Proc Natl Acad Sci U S A. 2020 Feb 4;117(5):2282-2287. doi: 10.1073/pnas.1900015117. Epub 2020 Jan 21.
8
10
Wettability, polarity, and water absorption of holm oak leaves: effect of leaf side and age.
Plant Physiol. 2014 Sep;166(1):168-80. doi: 10.1104/pp.114.242040. Epub 2014 Jun 9.

引用本文的文献

1
Transcriptomic analysis of peaches and nectarines reveals alternative mechanism for trichome formation.
BMC Plant Biol. 2025 May 10;25(1):620. doi: 10.1186/s12870-025-06622-7.
2
Enhancing Resistance to Wetting Transition through the Concave Structures.
Adv Mater. 2025 Jan;37(1):e2409389. doi: 10.1002/adma.202409389. Epub 2024 Oct 2.
3
Straight roads into nowhere - obvious and not-so-obvious biological models for ferrophobic surfaces.
Beilstein J Nanotechnol. 2022 Nov 17;13:1345-1360. doi: 10.3762/bjnano.13.111. eCollection 2022.

本文引用的文献

1
EROSION OF WAXES FROM LEAF SURFACES BY SIMULATED RAIN.
New Phytol. 1986 Jan;102(1):161-173. doi: 10.1111/j.1469-8137.1986.tb00807.x.
2
3
How a raindrop gets shattered on biological surfaces.
Proc Natl Acad Sci U S A. 2020 Jun 23;117(25):13901-13907. doi: 10.1073/pnas.2002924117. Epub 2020 Jun 8.
4
Superrepellency of underwater hierarchical structures on leaf.
Proc Natl Acad Sci U S A. 2020 Feb 4;117(5):2282-2287. doi: 10.1073/pnas.1900015117. Epub 2020 Jan 21.
5
Superhydrophobicity enhancement through substrate flexibility.
Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):13307-13312. doi: 10.1073/pnas.1611631113. Epub 2016 Nov 9.
6
Water droplet impact on elastic superhydrophobic surfaces.
Sci Rep. 2016 Jul 27;6:30328. doi: 10.1038/srep30328.
7
The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness.
Beilstein J Nanotechnol. 2015 Jan 2;6:11-8. doi: 10.3762/bjnano.6.2. eCollection 2015.
8
The force of impacting rain.
Soft Matter. 2014 Jul 21;10(27):4929-34. doi: 10.1039/c4sm00513a. Epub 2014 May 30.
9
Reducing the contact time of a bouncing drop.
Nature. 2013 Nov 21;503(7476):385-8. doi: 10.1038/nature12740.
10
Global patterns of leaf mechanical properties.
Ecol Lett. 2011 Mar;14(3):301-12. doi: 10.1111/j.1461-0248.2010.01582.x. Epub 2011 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验