Gelber Matthew K, Bhargava Rohit
Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA.
Lab Chip. 2015 Apr 7;15(7):1736-41. doi: 10.1039/c4lc01392a.
Here we demonstrate a method for creating multilayer or 3D microfluidics by casting a curable resin around a water-soluble, freestanding sacrificial mold. We use a purpose-built 3D printer to pattern self-supporting filaments of the sugar alcohol isomalt, which we then back-fill with a transparent epoxy resin. Dissolving the sacrificial mold leaves a network of cylindrical channels as well as input and output ports. We use this technique to fabricate a combinatorial mixer capable of producing 8 combinations of two fluids in ratios ranging from 1 : 100 to 100 : 1. This approach allows rapid iteration on microfluidic chip design and enables the use of geometry and materials not accessible using conventional soft lithography. The ability to precisely pattern round channels in all three dimensions in hard and soft media may prove enabling for many organ-on-chip systems.
在此,我们展示了一种通过在水溶性、独立的牺牲模具周围浇铸可固化树脂来制造多层或三维微流控装置的方法。我们使用一台特制的3D打印机对糖醇异麦芽酮糖醇的自支撑细丝进行图案化处理,然后用透明环氧树脂对其进行回填。溶解牺牲模具后会留下一个圆柱形通道网络以及输入和输出端口。我们使用这项技术制造了一种组合式混合器,它能够以1∶100至100∶1的比例产生两种流体的8种组合。这种方法允许在微流控芯片设计上进行快速迭代,并能够使用传统软光刻无法获得的几何形状和材料。在硬介质和软介质中在所有三个维度上精确图案化圆形通道的能力可能对许多芯片上器官系统具有推动作用。