Goldmacher Victor S, Audette Charlene A, Guan Yinghua, Sidhom Eriene-Heidi, Shah Jagesh V, Whiteman Kathleen R, Kovtun Yelena V
Department of Cell Biology, ImmunoGen, Inc., Waltham, Massachusetts, United States of America.
Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America; Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, United States of America.
PLoS One. 2015 Feb 11;10(2):e0117523. doi: 10.1371/journal.pone.0117523. eCollection 2015.
The microtubule-targeting maytansinoids accumulate in cells and induce mitotic arrest at 250- to 1000-fold lower concentrations than those required for their association with tubulin or microtubules. To identify the mechanisms of this intracellular accumulation and exceptional cytotoxicity of maytansinoids we studied interaction of a highly cytotoxic maytansinoid, S-methyl DM1 and several other maytansinoids with cells. S-methyl DM1 accumulated inside the cells with a markedly higher apparent affinity than to tubulin or microtubules. The apparent affinities of maytansinoids correlated with their cytotoxicities. The number of intracellular binding sites for S-methyl DM1 in MCF7 cells was comparable to the number of tubulin molecules per cell (~ 4-6 × 10(7) copies). Efflux of 3[H]-S-methyl DM1 from cells was enhanced in the presence of an excess of non-labeled S-methyl DM1, indicating that re-binding of 3 [H]-S-methyl DM1 to intracellular binding sites contributed to its intracellular retention. Liposomes loaded with non-polymerized tubulin recapitulated the apparent high-affinity association of S-methyl DM1 to cells. We propose a model for the intracellular accumulation of maytansinoids in which molecules of the compounds diffuse into a cell and associate with tubulin. Affinities of maytansinoids for individual tubulin molecules are weak, but the high intracellular concentration of tubulin favors, after dissociation of a compound-tubulin complex, their re-binding to a tubulin molecule, or to a tip of a microtubule in the same cell, over their efflux. As a result, a significant fraction of microtubule tips is occupied with a maytansinoid when added to cells at sub-nanomolar concentrations, inducing mitotic arrest and cell death.
靶向微管的美登素类化合物在细胞中积累,并在比其与微管蛋白或微管结合所需浓度低250至1000倍的浓度下诱导有丝分裂停滞。为了确定美登素类化合物这种细胞内积累和特殊细胞毒性的机制,我们研究了一种高细胞毒性的美登素类化合物S-甲基DM1以及其他几种美登素类化合物与细胞的相互作用。S-甲基DM1在细胞内积累,其表观亲和力明显高于与微管蛋白或微管的亲和力。美登素类化合物的表观亲和力与其细胞毒性相关。MCF7细胞中S-甲基DM1的细胞内结合位点数量与每个细胞中的微管蛋白分子数量相当(约4 - 6×10⁷个拷贝)。在存在过量未标记的S-甲基DM1的情况下,细胞中³H-S-甲基DM1的外排增强,表明³H-S-甲基DM1与细胞内结合位点的重新结合有助于其细胞内滞留。装载未聚合微管蛋白的脂质体重现了S-甲基DM1与细胞的明显高亲和力结合。我们提出了一个美登素类化合物细胞内积累的模型,其中化合物分子扩散到细胞中并与微管蛋白结合。美登素类化合物与单个微管蛋白分子的亲和力较弱,但微管蛋白在细胞内的高浓度有利于化合物 - 微管蛋白复合物解离后,它们重新结合到同一细胞中的微管蛋白分子或微管末端,而不是外排。结果,当以亚纳摩尔浓度添加到细胞中时,很大一部分微管末端被美登素类化合物占据,从而诱导有丝分裂停滞和细胞死亡。