Zurek Paul R, Topp Christopher N, Benfey Philip N
Department of Biology, Howard Hughes Medical Institute, and Center for Systems Biology, Duke University, Durham, North Carolina 27708 (P.R.Z., P.N.B.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.N.T.).
Department of Biology, Howard Hughes Medical Institute, and Center for Systems Biology, Duke University, Durham, North Carolina 27708 (P.R.Z., P.N.B.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.N.T.)
Plant Physiol. 2015 Apr;167(4):1487-96. doi: 10.1104/pp.114.251751. Epub 2015 Feb 11.
The quest to determine the genetic basis of root system architecture (RSA) has been greatly facilitated by recent developments in root phenotyping techniques. Methods that are accurate, high throughput, and control for environmental factors are especially attractive for quantitative trait locus mapping. Here, we describe the adaptation of a nondestructive in vivo gel-based root imaging platform for use in maize (Zea mays). We identify a large number of contrasting RSA traits among 25 founder lines of the maize nested association mapping population and locate 102 quantitative trait loci using the B73 (compact RSA)×Ki3 (exploratory RSA) mapping population. Our results suggest that a phenotypic tradeoff exists between small, compact RSA and large, exploratory RSA.
根系表型分析技术的最新进展极大地推动了确定根系结构(RSA)遗传基础的研究。准确、高通量且能控制环境因素的方法对于数量性状基因座定位尤为有吸引力。在此,我们描述了一种基于凝胶的无损活体根系成像平台在玉米(Zea mays)中的应用。我们在玉米嵌套关联作图群体的25个奠基系中鉴定出大量对比鲜明的RSA性状,并利用B73(紧凑型RSA)×Ki3(拓展型RSA)作图群体定位了102个数量性状基因座。我们的结果表明,小型紧凑型RSA和大型拓展型RSA之间存在表型权衡。