Suppr超能文献

相似文献

1
Quantitative trait locus mapping reveals regions of the maize genome controlling root system architecture.
Plant Physiol. 2015 Apr;167(4):1487-96. doi: 10.1104/pp.114.251751. Epub 2015 Feb 11.
2
Shared Genetic Control of Root System Architecture between and .
Plant Physiol. 2020 Feb;182(2):977-991. doi: 10.1104/pp.19.00752. Epub 2019 Nov 18.
3
Mapping QTLs for root system architecture of maize (Zea mays L.) in the field at different developmental stages.
Theor Appl Genet. 2012 Oct;125(6):1313-24. doi: 10.1007/s00122-012-1915-6. Epub 2012 Jun 21.
4
3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture.
Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):E1695-704. doi: 10.1073/pnas.1304354110. Epub 2013 Apr 11.
6
9
The genetic architecture of nodal root number in maize.
Plant J. 2018 Mar;93(6):1032-1044. doi: 10.1111/tpj.13828. Epub 2018 Feb 23.

引用本文的文献

3
Complementary Phenotyping of Maize Root System Architecture by Root Pulling Force and X-Ray Imaging.
Plant Phenomics. 2021 Nov 10;2021:9859254. doi: 10.34133/2021/9859254. eCollection 2021.
4
Capturing in-field root system dynamics with RootTracker.
Plant Physiol. 2021 Nov 3;187(3):1117-1130. doi: 10.1093/plphys/kiab352.
5
A Comparative Analysis of Quantitative Metrics of Root Architecture.
Plant Phenomics. 2021 Feb 24;2021:6953197. doi: 10.34133/2021/6953197. eCollection 2021.
6
A novel motif in the 5'-UTR of an orphan gene 'Big Root Biomass' modulates root biomass in sesame.
Plant Biotechnol J. 2021 May;19(5):1065-1079. doi: 10.1111/pbi.13531. Epub 2021 Feb 1.
7
A Statistical Growth Property of Plant Root Architectures.
Plant Phenomics. 2020 Nov 8;2020:2073723. doi: 10.34133/2020/2073723. eCollection 2020.
8
Genetics and genomics of root system variation in adaptation to drought stress in cereal crops.
J Exp Bot. 2021 Feb 24;72(4):1007-1019. doi: 10.1093/jxb/eraa487.
9
Ten Years of the Maize Nested Association Mapping Population: Impact, Limitations, and Future Directions.
Plant Cell. 2020 Jul;32(7):2083-2093. doi: 10.1105/tpc.19.00951. Epub 2020 May 12.

本文引用的文献

1
Root architectural tradeoffs for water and phosphorus acquisition.
Funct Plant Biol. 2005 Sep;32(8):737-748. doi: 10.1071/FP05043.
2
A trade-off between scale and precision in resource foraging.
Oecologia. 1991 Sep;87(4):532-538. doi: 10.1007/BF00320417.
4
Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.
Nat Genet. 2013 Sep;45(9):1097-102. doi: 10.1038/ng.2725. Epub 2013 Aug 4.
6
3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture.
Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):E1695-704. doi: 10.1073/pnas.1304354110. Epub 2013 Apr 11.
7
Genotypic recognition and spatial responses by rice roots.
Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2670-5. doi: 10.1073/pnas.1222821110. Epub 2013 Jan 29.
8
The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency.
Nature. 2012 Aug 23;488(7412):535-9. doi: 10.1038/nature11346.
9
GiA Roots: software for the high throughput analysis of plant root system architecture.
BMC Plant Biol. 2012 Jul 26;12:116. doi: 10.1186/1471-2229-12-116.
10
Genome-wide genetic changes during modern breeding of maize.
Nat Genet. 2012 Jun 3;44(7):812-5. doi: 10.1038/ng.2312.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验