Suppr超能文献

GiA Roots:用于植物根系结构高通量分析的软件。

GiA Roots: software for the high throughput analysis of plant root system architecture.

作者信息

Galkovskyi Taras, Mileyko Yuriy, Bucksch Alexander, Moore Brad, Symonova Olga, Price Charles A, Topp Christopher N, Iyer-Pascuzzi Anjali S, Zurek Paul R, Fang Suqin, Harer John, Benfey Philip N, Weitz Joshua S

机构信息

Department of Mathematics, Duke University, Durham, NC, USA.

出版信息

BMC Plant Biol. 2012 Jul 26;12:116. doi: 10.1186/1471-2229-12-116.

Abstract

BACKGROUND

Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks.

RESULTS

We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically for the high-throughput analysis of root system images. GiA Roots includes user-assisted algorithms to distinguish root from background and a fully automated pipeline that extracts dozens of root system phenotypes. Quantitative information on each phenotype, along with intermediate steps for full reproducibility, is returned to the end-user for downstream analysis. GiA Roots has a GUI front end and a command-line interface for interweaving the software into large-scale workflows. GiA Roots can also be extended to estimate novel phenotypes specified by the end-user.

CONCLUSIONS

We demonstrate the use of GiA Roots on a set of 2393 images of rice roots representing 12 genotypes from the species Oryza sativa. We validate trait measurements against prior analyses of this image set that demonstrated that RSA traits are likely heritable and associated with genotypic differences. Moreover, we demonstrate that GiA Roots is extensible and an end-user can add functionality so that GiA Roots can estimate novel RSA traits. In summary, we show that the software can function as an efficient tool as part of a workflow to move from large numbers of root images to downstream analysis.

摘要

背景

表征根系结构(RSA)对于理解维管植物的发育和功能至关重要。识别与RSA相关的基因也为作物改良提供了一个尚未充分探索的机会。需要软件工具来加快从根系网络图像中估计RSA数量性状的速度。

结果

我们开发了GiA Roots(根系通用图像分析),这是一种专门为根系图像高通量分析设计的半自动软件工具。GiA Roots包括用于区分根系与背景的用户辅助算法以及一个提取数十种根系表型的全自动流程。关于每个表型的定量信息以及实现完全可重复性的中间步骤会返回给最终用户以供下游分析。GiA Roots有一个图形用户界面前端和一个命令行界面,用于将该软件融入大规模工作流程。GiA Roots还可以扩展以估计最终用户指定的新表型。

结论

我们展示了GiA Roots在一组2393张水稻根系图像上的应用,这些图像代表了来自水稻品种的12种基因型。我们对照该图像集的先前分析验证了性状测量结果,先前分析表明RSA性状可能具有遗传性并与基因型差异相关。此外,我们证明了GiA Roots是可扩展的,最终用户可以添加功能,使GiA Roots能够估计新的RSA性状。总之,我们表明该软件可以作为工作流程的一部分,作为一个有效的工具,从大量根系图像转向下游分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06b9/3444351/206a720dbb4c/1471-2229-12-116-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验