Suppr超能文献

谷氨酸可克服盐对DNA聚合酶III全酶的抑制作用。

Glutamate overcomes the salt inhibition of DNA polymerase III holoenzyme.

作者信息

Griep M A, McHenry C S

机构信息

Department of Biochemistry, Biophysics, and Genetics, University of Colorado Health Sciences Center 80262.

出版信息

J Biol Chem. 1989 Jul 5;264(19):11294-301.

PMID:2567734
Abstract

Even though Escherichia coli can grow in media containing up to 1 M NaCl, one-fifth that amount of NaCl will completely inhibit the in vitro activity of DNA polymerase III holoenzyme. It has been established that the major intracellular ionic osmolytes are potassium and glutamate (Richey, B., Cayley, D. S., Mossing, M. C., Kolka, C., Anderson, C. F., Farrar, T. C., and Record, M. T., Jr. (1987) J. Biol. Chem. 262, 7157-7164). We have found that holoenzyme catalyzes replication efficiently in vitro in up to 1 M potassium glutamate. Two salt effects on the replication of single-stranded DNA were observed. At low salt replicative activity was enhanced and at high salt there was anion-specific inhibition. We have found that DNA polymerase III holoenzyme tolerated 10-fold higher concentrations of glutamate than chloride. The ability of various anions to extend the useful range of salt concentrations followed the order: phosphate less than chloride less than N-Ac-glutamate less than acetate less than glycine less than aspartate less than glutamate. With the exception of phosphate, this order followed the Hofmeister series indicating that the anion-specific effects were due to anions interacting at the protein-water interface at weak anion binding sites. Glutamate did not reverse the inhibition by chloride. The low salt enhancement and high salt inhibition effects were additive for the two anions indicating that they competed for common anion binding sites. The major salt-sensitive step was holoenzyme binding to template rather than the subsequent elongation reaction.

摘要

尽管大肠杆菌能够在含有高达1M氯化钠的培养基中生长,但五分之一该量的氯化钠就会完全抑制DNA聚合酶III全酶的体外活性。已经确定主要的细胞内离子渗透溶质是钾离子和谷氨酸(里奇,B.,凯利,D.S.,莫辛,M.C.,科尔卡,C.,安德森,C.F.,法拉尔,T.C.,以及小雷科德,M.T.(1987年)《生物化学杂志》262卷,7157 - 7164页)。我们发现全酶在高达1M的谷氨酸钾中能够在体外高效催化复制。观察到了两种盐对单链DNA复制的影响。在低盐浓度下,复制活性增强,而在高盐浓度下存在阴离子特异性抑制。我们发现DNA聚合酶III全酶耐受的谷氨酸浓度比氯离子高10倍。各种阴离子扩展盐浓度有用范围的能力顺序如下:磷酸根<氯离子<N - 乙酰谷氨酸<醋酸根<甘氨酸<天冬氨酸<谷氨酸。除了磷酸根外,该顺序遵循霍夫迈斯特序列,表明阴离子特异性效应是由于阴离子在弱阴离子结合位点处蛋白质与水的界面相互作用所致。谷氨酸不能逆转氯离子的抑制作用。对于这两种阴离子,低盐增强效应和高盐抑制效应是相加的,表明它们竞争共同的阴离子结合位点。主要的盐敏感步骤是全酶与模板的结合而非随后的延伸反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验