Durand Adeline, Sinha Anurag Kumar, Dard-Dascot Cloelia, Michel Bénédicte
Genome biology department, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
High-throughput Sequencing facility, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
PLoS Genet. 2016 Jun 9;12(6):e1006114. doi: 10.1371/journal.pgen.1006114. eCollection 2016 Jun.
Mutants lacking the ψ (HolD) subunit of the Escherichia coli DNA Polymerase III holoenzyme (Pol III HE) have poor viability, but a residual growth allows the isolation of spontaneous suppressor mutations that restore ΔholD mutant viability. Here we describe the isolation and characterization of two suppressor mutations in the trkA and trkE genes, involved in the main E. coli potassium import system. Viability of ΔholD trk mutants is abolished on media with low or high K+ concentrations, where alternative K+ import systems are activated, and is restored on low K+ concentrations by the inactivation of the alternative Kdp system. These findings show that the ΔholD mutant is rescued by a decrease in K+ import. The effect of trk inactivation is additive with the previously identified ΔholD suppressor mutation lexAind that blocks the SOS response indicating an SOS-independent mechanism of suppression. Accordingly, although lagging-strand synthesis is still perturbed in holD trkA mutants, the trkA mutation allows HolD-less Pol III HE to resist increased levels of the SOS-induced bypass polymerase DinB. trk inactivation is also partially additive with an ssb gene duplication, proposed to stabilize HolD-less Pol III HE by a modification of the single-stranded DNA binding protein (SSB) binding mode. We propose that lowering the intracellular K+ concentration stabilizes HolD-less Pol III HE on DNA by increasing electrostatic interactions between Pol III HE subunits, or between Pol III and DNA, directly or through a modification of the SSB binding mode; these three modes of action are not exclusive and could be additive. To our knowledge, the holD mutant provides the first example of an essential protein-DNA interaction that strongly depends on K+ import in vivo.
缺乏大肠杆菌DNA聚合酶III全酶(Pol III HE)的ψ(HolD)亚基的突变体生存能力较差,但残余的生长使得能够分离出恢复ΔholD突变体生存能力的自发抑制突变。在此,我们描述了trkA和trkE基因中两个抑制突变的分离和表征,这两个基因参与大肠杆菌主要的钾离子导入系统。在低或高K⁺浓度的培养基上,替代K⁺导入系统被激活,ΔholD trk突变体的生存能力丧失,而通过使替代的Kdp系统失活,在低K⁺浓度下其生存能力得以恢复。这些发现表明,ΔholD突变体通过减少K⁺导入而得到拯救。trk失活的效应与先前鉴定的阻断SOS反应的ΔholD抑制突变lexAind具有累加性,表明存在一种不依赖SOS的抑制机制。因此,尽管在holD trkA突变体中滞后链合成仍然受到干扰,但trkA突变使不含HolD的Pol III HE能够抵抗SOS诱导的旁路聚合酶DinB水平的升高。trk失活与ssb基因重复也具有部分累加性,ssb基因重复被认为是通过改变单链DNA结合蛋白(SSB)的结合模式来稳定不含HolD的Pol III HE。我们提出,降低细胞内K⁺浓度通过增加Pol III HE亚基之间或Pol III与DNA之间的静电相互作用,直接或通过改变SSB结合模式,使不含HolD的Pol III HE在DNA上稳定;这三种作用方式并非相互排斥,可能具有累加性。据我们所知,holD突变体提供了一个在体内强烈依赖K⁺导入的必需蛋白质 - DNA相互作用的首个例子。