Cortes Laura, Wedd Anthony G, Xiao Zhiguang
School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
Metallomics. 2015 May;7(5):776-85. doi: 10.1039/c5mt00001g. Epub 2015 Feb 13.
CueO from Escherichia coli is a multicopper oxidase (MCO) involved in copper tolerance under aerobic conditions. It features the four typical copper atoms that act as electron transfer (T1) and dioxygen reduction (T2, T3; trinuclear) sites. In addition, it displays a methionine- and histidine-rich insert that includes a helix that blocks physical access to the T1 site. In crystalline form, the insert provides at least three additional Met-rich Cu(I) binding sites Cu5 (sCu), Cu6 and Cu7 that are proposed to facilitate rapid oxidation of bound Cu(I) to Cu(II) (S. K. Singh, et al., J. Biol. Chem., 2011, 43, 37849-37857). The activities of variants featuring mutations at sites Cu5 (D360M, M355LD360N), Cu6 (M358,362S), Cu7 (M364,368S) and Cu6,7 (M358,362,364,368S) were compared to that of the wild type form using three different air-stable model substrates (2,6-dimethoxyphenol, Cu(I)(Bca)2 and Cu(I)Cu(II)-PcoC, a periplasmic Cu(I) binding protein from E. coli). The results demonstrate that the three copper sites play related but distinct roles in CueO oxidase activities. The internal Cu5 site is part of the essential electron transfer pathway connecting surface-exposed sites Cu6 and Cu7 to site T1. Both Cu6 and Cu7 are dominant substrate-docking-oxidation (SDO) sites on the protein surface. However, under physiologically relevant conditions, the SDO function of Cu6 relies largely on an electron transfer pathway via Cu7 to Cu5. These Met-rich sites in CueO provide a robust cuprous oxidase function for control of Cu(I) toxicity.
来自大肠杆菌的CueO是一种多铜氧化酶(MCO),在有氧条件下参与铜耐受性。它具有四个典型的铜原子,作为电子转移(T1)和双氧还原(T2、T3;三核)位点。此外,它还显示出一个富含甲硫氨酸和组氨酸的插入序列,其中包括一个螺旋结构,该螺旋结构会阻碍对T1位点的物理访问。在晶体形式中,该插入序列提供了至少三个额外的富含甲硫氨酸的Cu(I)结合位点Cu5(sCu)、Cu6和Cu7,据推测这些位点有助于将结合的Cu(I)快速氧化为Cu(II)(S.K.辛格等人,《生物化学杂志》,2011年,43卷,37849 - 37857页)。使用三种不同的空气稳定模型底物(2,6 - 二甲氧基苯酚、[Cu(I)(Bca)2](3 - )和Cu(I)Cu(II) - PcoC,一种来自大肠杆菌的周质Cu(I)结合蛋白),将在Cu5(D360M、M355L D360N)、Cu6(M358,362S)、Cu7(M364,368S)和Cu6,7(M358,362,364,368S)位点发生突变的变体的活性与野生型形式的活性进行了比较。结果表明,这三个铜位点在CueO氧化酶活性中发挥着相关但不同的作用。内部的Cu5位点是将表面暴露的位点Cu6和Cu7连接到T1位点的基本电子转移途径的一部分。Cu6和Cu7都是蛋白质表面主要的底物对接氧化(SDO)位点。然而,在生理相关条件下,Cu6的SDO功能很大程度上依赖于通过Cu7到Cu5的电子转移途径。CueO中这些富含甲硫氨酸的位点为控制Cu(I)毒性提供了强大的亚铜氧化酶功能。