Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France.
Institut de Microbiologie de la Méditerranée, Plate-forme Transcriptomique, Marseille, France.
PLoS Genet. 2022 Jul 11;18(7):e1010180. doi: 10.1371/journal.pgen.1010180. eCollection 2022 Jul.
Methionine residues are particularly sensitive to oxidation by reactive oxygen or chlorine species (ROS/RCS), leading to the appearance of methionine sulfoxide in proteins. This post-translational oxidation can be reversed by omnipresent protein repair pathways involving methionine sulfoxide reductases (Msr). In the periplasm of Escherichia coli, the enzymatic system MsrPQ, whose expression is triggered by the RCS, controls the redox status of methionine residues. Here we report that MsrPQ synthesis is also induced by copper stress via the CusSR two-component system, and that MsrPQ plays a role in copper homeostasis by maintaining the activity of the copper efflux pump, CusCFBA. Genetic and biochemical evidence suggest the metallochaperone CusF is the substrate of MsrPQ and our study reveals that CusF methionines are redox sensitive and can be restored by MsrPQ. Thus, the evolution of a CusSR-dependent synthesis of MsrPQ allows conservation of copper homeostasis under aerobic conditions by maintenance of the reduced state of Met residues in copper-trafficking proteins.
蛋氨酸残基特别容易受到活性氧或氯物种(ROS/RCS)的氧化,导致蛋白质中出现蛋氨酸亚砜。这种翻译后氧化可以通过普遍存在的蛋白质修复途径逆转,其中涉及蛋氨酸亚砜还原酶(Msr)。在大肠杆菌的周质中,酶系统 MsrPQ 的表达受 RCS 触发,控制蛋氨酸残基的氧化还原状态。在这里,我们报告说 MsrPQ 的合成也可以通过铜应激通过 CusSR 双组分系统诱导,并且 MsrPQ 通过维持铜外排泵 CusCFBA 的活性在铜稳态中发挥作用。遗传和生化证据表明金属伴侣蛋白 CusF 是 MsrPQ 的底物,我们的研究表明 CusF 蛋氨酸残基是氧化还原敏感的,可以被 MsrPQ 恢复。因此,CusSR 依赖性 MsrPQ 合成的进化允许通过维持铜转运蛋白中 Met 残基的还原状态来维持有氧条件下的铜稳态。