Aix Marseille University, CNRS, BIP - UMR 7281, IMM - FR3479, 13402 Marseille, France.
Aix Marseille University, CNRS, LCB - UMR 7283, IMM - FR3479, 13402 Marseille, France.
Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2402862121. doi: 10.1073/pnas.2402862121. Epub 2024 Oct 8.
Copper homeostasis mechanisms are critical for bacterial resistance to copper-induced stress. The multicopper oxidase copper efflux oxidase (CueO) is part of the copper detoxification system in aerobic conditions. CueO contains a methionine-rich (Met-rich) domain believed to interact with copper, but its exact function and the importance of related copper-binding sites remain unclear. This study investigates these open questions by employing a multimodal and multiscale approach. Through the design of various CueO (EcCueO) variants with altered copper-coordinating residues and domain deletions, we employ biological, biochemical, and physico-chemical approaches to unravel in vitro CueO catalytic properties and in vivo copper resistance. Strong correlation between the different methods enables evaluation of EcCueO variants' activity as a function of Cu+ availability. Our findings demonstrate the Met-rich domain is not essential for cuprous oxidation, but it facilitates Cu+ recruitment from strongly chelated forms, acting as transient copper binding domain thanks to multiple methionines. They also indicate that the Cu6/7 copper-binding sites previously observed within the Met-rich domain play a negligible role. Meanwhile, Cu5, located at the interface with the Met-rich domain, emerges as the primary and sole substrate-binding active site for cuprous oxidation. The Cu5 coordination sphere strongly affects the enzyme activity and the in vivo copper resistance. This study provides insights into the nuanced role of CueO Met-rich domain, enabling the functions of copper-binding sites and the entire domain itself to be decoupled. This paves the way for a deeper understanding of Met-rich domains in the context of bacterial copper homeostasis.
铜稳态机制对于细菌抵抗铜诱导的应激至关重要。多铜氧化酶铜外排氧化酶(CueO)是好氧条件下铜解毒系统的一部分。CueO 含有一个富含甲硫氨酸(Met-rich)的结构域,据信该结构域与铜相互作用,但它的确切功能和相关铜结合位点的重要性仍不清楚。本研究通过采用多模态和多尺度方法来研究这些未解决的问题。通过设计具有改变的铜配位残基和结构域缺失的各种 CueO(EcCueO)变体,我们采用生物、生化和物理化学方法来揭示体外 CueO 催化特性和体内铜抗性。不同方法之间的强相关性使得能够评估 EcCueO 变体的活性作为 Cu+可用性的函数。我们的研究结果表明,富含甲硫氨酸的结构域对于亚铜氧化不是必需的,但它促进了从强螯合形式中招募 Cu+,由于存在多个甲硫氨酸,它充当瞬态铜结合结构域。它们还表明,先前在富含甲硫氨酸的结构域中观察到的 Cu6/7 铜结合位点几乎不起作用。与此同时,位于富含甲硫氨酸的结构域界面处的 Cu5 作为亚铜氧化的主要和唯一的底物结合活性位点出现。Cu5 的配位球强烈影响酶活性和体内铜抗性。本研究深入了解了 CueO 富含甲硫氨酸的结构域的微妙作用,使铜结合位点和整个结构域的功能能够解耦。这为深入了解细菌铜稳态中富含甲硫氨酸的结构域铺平了道路。