Suppr超能文献

基于多类运动想象的脑机接口的自适应堆叠泛化

Adaptive Stacked Generalization for Multiclass Motor Imagery-Based Brain Computer Interfaces.

作者信息

Nicolas-Alonso Luis F, Corralejo Rebeca, Gomez-Pilar Javier, Álvarez Daniel, Hornero Roberto

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2015 Jul;23(4):702-12. doi: 10.1109/TNSRE.2015.2398573. Epub 2015 Feb 11.

Abstract

Practical motor imagery-based brain computer interface (MI-BCI) applications are limited by the difficult to decode brain signals in a reliable way. In this paper, we propose a processing framework to address non-stationarity, as well as handle spectral, temporal, and spatial characteristics associated with execution of motor tasks. Stacked generalization is used to exploit the power of classifier ensembles for combining information coming from multiple sources and reducing the existing uncertainty in EEG signals. The outputs of several regularized linear discriminant analysis (RLDA) models are combined to account for temporal, spatial, and spectral information. The resultant algorithm is called stacked RLDA (SRLDA). Additionally, an adaptive processing stage is introduced before classification to reduce the harmful effect of intersession non-stationarity. The benefits of the proposed method are evaluated on the BCI Competition IV dataset 2a. We demonstrate its effectiveness in binary and multiclass settings with four different motor imagery tasks: left-hand, right-hand, both feet, and tongue movements. The results show that adaptive SRLDA outperforms the winner of the competition and other approaches tested on this multiclass dataset.

摘要

基于实际运动想象的脑机接口(MI-BCI)应用受到难以可靠解码脑信号的限制。在本文中,我们提出了一个处理框架,以解决非平稳性问题,并处理与运动任务执行相关的频谱、时间和空间特征。堆叠泛化用于利用分类器集成的能力,将来自多个源的信息进行组合,并减少脑电图(EEG)信号中现有的不确定性。几个正则化线性判别分析(RLDA)模型的输出被组合起来,以考虑时间、空间和频谱信息。由此产生的算法被称为堆叠RLDA(SRLDA)。此外,在分类之前引入了一个自适应处理阶段,以减少会话间非平稳性的有害影响。所提出方法的优点在脑机接口竞赛IV数据集2a上进行了评估。我们展示了它在二进制和多类设置下,针对四种不同运动想象任务(左手、右手、双脚和舌头运动)的有效性。结果表明,自适应SRLDA优于竞赛的获胜者以及在这个多类数据集上测试的其他方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验