Suppr超能文献

人类与机器的协同适应改善同步和比例肌电控制。

Concurrent Adaptation of Human and Machine Improves Simultaneous and Proportional Myoelectric Control.

作者信息

Hahne Janne M, Dahne Sven, Hwang Han-Jeong, Muller Klaus-Robert, Parra Lucas C

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2015 Jul;23(4):618-27. doi: 10.1109/TNSRE.2015.2401134. Epub 2015 Feb 10.

Abstract

Myoelectric control of a prosthetic hand with more than one degree of freedom (DoF) is challenging, and clinically available techniques require a sequential actuation of the DoFs. Simultaneous and proportional control of multiple DoFs is possible with regression-based approaches allowing for fluent and natural movements. Conventionally, the regressor is calibrated in an open-loop with training based on recorded data and the performance is evaluated subsequently. For individuals with amputation or congenital limb-deficiency who need to (re)learn how to generate suitable muscle contractions, this open-loop process may not be effective. We present a closed-loop real-time learning scheme in which both the user and the machine learn simultaneously to follow a common target. Experiments with ten able-bodied individuals show that this co-adaptive closed-loop learning strategy leads to significant performance improvements compared to a conventional open-loop training paradigm. Importantly, co-adaptive learning allowed two individuals with congenital deficiencies to perform simultaneous 2-D proportional control at levels comparable to the able-bodied individuals, despite having to a learn completely new and unfamiliar mapping from muscle activity to movement trajectories. To our knowledge, this is the first study which investigates man-machine co-adaptation for regression-based myoelectric control. The proposed training strategy has the potential to improve myographic prosthetic control in clinically relevant settings.

摘要

对具有多个自由度(DoF)的假手进行肌电控制具有挑战性,并且临床上可用的技术需要对各个自由度进行顺序驱动。基于回归的方法能够实现对多个自由度的同时和比例控制,从而实现流畅自然的动作。传统上,回归器是在开环状态下根据记录的数据进行训练校准,随后再评估其性能。对于需要(重新)学习如何产生合适肌肉收缩的截肢或先天性肢体缺陷患者而言,这种开环过程可能并不有效。我们提出了一种闭环实时学习方案,其中用户和机器同时学习以遵循共同目标。对十名身体健全的个体进行的实验表明,与传统的开环训练范式相比,这种共同自适应闭环学习策略可显著提高性能。重要的是,共同自适应学习使两名先天性缺陷患者能够进行二维比例控制,其水平与身体健全的个体相当,尽管他们必须学习从肌肉活动到运动轨迹的全新且不熟悉的映射。据我们所知,这是第一项研究基于回归的肌电控制中的人机共同自适应的研究。所提出的训练策略有可能在临床相关环境中改善肌电图假肢控制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验