Tremblay Yannick D N, Vogeleer Philippe, Jacques Mario, Harel Josée
Département de Pathologie et Microbiologie, Groupe de Recherche sur les Maladies Infectieuses du Porc, Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada.
Département de Pathologie et Microbiologie, Groupe de Recherche sur les Maladies Infectieuses du Porc, Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
Appl Environ Microbiol. 2015 Apr;81(8):2827-40. doi: 10.1128/AEM.04208-14. Epub 2015 Feb 13.
Biofilm formation and host-pathogen interactions are frequently studied using multiwell plates; however, these closed systems lack shear force, which is present at several sites in the host, such as the intestinal and urinary tracts. Recently, microfluidic systems that incorporate shear force and very small volumes have been developed to provide cell biology models that resemble in vivo conditions. Therefore, the objective of this study was to determine if the BioFlux 200 microfluidic system could be used to study host-pathogen interactions and biofilm formation by pathogenic Escherichia coli. Strains of various pathotypes were selected to establish the growth conditions for the formation of biofilms in the BioFlux 200 system on abiotic (glass) or biotic (eukaryotic-cell) surfaces. Biofilm formation on glass was observed for the majority of strains when they were grown in M9 medium at 30 °C but not in RPMI medium at 37 °C. In contrast, HRT-18 cell monolayers enhanced binding and, in most cases, biofilm formation by pathogenic E. coli in RPMI medium at 37 °C. As a proof of principle, the biofilm-forming ability of a diffusely adherent E. coli mutant strain lacking AIDA-I, a known mediator of attachment, was assessed in our models. In contrast to the parental strain, which formed a strong biofilm, the mutant formed a thin biofilm on glass or isolated clusters on HRT-18 monolayers. In conclusion, we describe a microfluidic method for high-throughput screening that could be used to identify novel factors involved in E. coli biofilm formation and host-pathogen interactions under shear force.
生物膜形成和宿主-病原体相互作用通常使用多孔板进行研究;然而,这些封闭系统缺乏剪切力,而剪切力在宿主体内的多个部位存在,如肠道和泌尿道。最近,已开发出结合剪切力和极少量体积的微流控系统,以提供类似于体内条件的细胞生物学模型。因此,本研究的目的是确定BioFlux 200微流控系统是否可用于研究致病性大肠杆菌的宿主-病原体相互作用和生物膜形成。选择了各种致病型菌株,以确定在BioFlux 200系统中,在非生物(玻璃)或生物(真核细胞)表面形成生物膜的生长条件。当大多数菌株在30°C的M9培养基中生长时,在玻璃上观察到生物膜形成,但在37°C的RPMI培养基中则未观察到。相比之下,HRT-18细胞单层增强了致病性大肠杆菌在37°C的RPMI培养基中的黏附,并且在大多数情况下增强了生物膜形成。作为原理验证,在我们的模型中评估了缺乏已知黏附介质AIDA-I的弥漫性黏附大肠杆菌突变菌株的生物膜形成能力。与形成强生物膜的亲本菌株相比,突变体在玻璃上形成了薄生物膜,或在HRT-18单层上形成了孤立的簇。总之,我们描述了一种用于高通量筛选的微流控方法,该方法可用于识别在剪切力作用下参与大肠杆菌生物膜形成和宿主-病原体相互作用的新因子。