Suppr超能文献

大肠杆菌中的直接上游运动。

Direct upstream motility in Escherichia coli.

机构信息

School of Engineering and Technology, Central Michigan University, Mt. Pleasant, Michigan, USA.

出版信息

Biophys J. 2012 Apr 4;102(7):1514-23. doi: 10.1016/j.bpj.2012.03.001. Epub 2012 Apr 3.

Abstract

We provide an experimental demonstration of positive rheotaxis (rapid and continuous upstream motility) in wild-type Escherichia coli freely swimming over a surface. This hydrodynamic phenomenon is dominant below a critical shear rate and robust against Brownian motion and cell tumbling. We deduce that individual bacteria entering a flow system can rapidly migrate upstream (>20 μm/s) much faster than a gradually advancing biofilm. Given a bacterial population with a distribution of sizes and swim speeds, local shear rate near the surface determines the dominant hydrodynamic mode for motility, i.e., circular or random trajectories for low shear rates, positive rheotaxis for moderate flow, and sideways swimming at higher shear rates. Faster swimmers can move upstream more rapidly and at higher shear rates, as expected. Interestingly, we also find on average that both swim speed and upstream motility are independent of cell aspect ratio.

摘要

我们在野生型大肠杆菌在表面自由游动的情况下,提供了一个正趋流性(快速且连续的向上游动)的实验演示。这种流体动力现象在临界剪切率以下占主导地位,并且能够抵抗布朗运动和细胞翻滚。我们推断,进入流动系统的单个细菌可以比逐渐前进的生物膜更快地向上游迁移(>20 μm/s)。对于具有大小和游动速度分布的细菌群体,表面附近的局部剪切率决定了运动的主要流体动力模式,即低剪切率下的圆形或随机轨迹、中等流速下的正趋流性以及更高剪切率下的侧向游动。正如预期的那样,游动速度更快的细菌可以更快地向上游移动,并且在更高的剪切率下也可以更快地移动。有趣的是,我们还发现,游动速度和向上游动的能力平均而言都与细胞纵横比无关。

相似文献

1
Direct upstream motility in Escherichia coli.大肠杆菌中的直接上游运动。
Biophys J. 2012 Apr 4;102(7):1514-23. doi: 10.1016/j.bpj.2012.03.001. Epub 2012 Apr 3.
5
Hydrodynamic entrapment of bacteria swimming near a solid surface.细菌在固体表面附近游动时的流体动力学捕获。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 2):056309. doi: 10.1103/PhysRevE.82.056309. Epub 2010 Nov 11.
8
Failed escape: solid surfaces prevent tumbling of Escherichia coli.逃逸失败:固体表面阻止大肠杆菌翻滚。
Phys Rev Lett. 2014 Aug 8;113(6):068103. doi: 10.1103/PhysRevLett.113.068103. Epub 2014 Aug 7.
10
Filamentous Escherichia coli cells swimming in tapered microcapillaries.在锥形微毛细管中游动的丝状大肠杆菌细胞。
Res Microbiol. 2014 Apr;165(3):166-74. doi: 10.1016/j.resmic.2014.01.007. Epub 2014 Feb 22.

引用本文的文献

4
Enhancement of bacterial rheotaxis in non-Newtonian fluids.非牛顿流体中细菌趋流性的增强。
Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2417614121. doi: 10.1073/pnas.2417614121. Epub 2024 Dec 5.
5
AI-aided geometric design of anti-infection catheters.人工智能辅助抗感染导管的几何设计。
Sci Adv. 2024 Jan 5;10(1):eadj1741. doi: 10.1126/sciadv.adj1741. Epub 2024 Jan 3.
6
Multiflagellarity leads to the size-independent swimming speed of peritrichous bacteria.多鞭毛导致边缘型细菌的游动速度与大小无关。
Proc Natl Acad Sci U S A. 2023 Nov 28;120(48):e2310952120. doi: 10.1073/pnas.2310952120. Epub 2023 Nov 22.
8
Active particles crossing sharp viscosity gradients.活性粒子穿越急剧的黏度梯度。
Sci Rep. 2023 Jan 11;13(1):596. doi: 10.1038/s41598-023-27423-8.
9
Microswimmers in vortices: dynamics and trapping.微泳者在涡旋中:动力学与捕获。
Soft Matter. 2022 Dec 7;18(47):8931-8944. doi: 10.1039/d2sm00907b.

本文引用的文献

6
Swimming patterns and dynamics of simulated Escherichia coli bacteria.模拟大肠杆菌的游动模式和动力学。
J R Soc Interface. 2009 Nov 6;6(40):1035-46. doi: 10.1098/rsif.2008.0397. Epub 2009 Feb 25.
7
Amplified effect of Brownian motion in bacterial near-surface swimming.布朗运动在细菌近表面游动中的放大效应。
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18355-9. doi: 10.1073/pnas.0807305105. Epub 2008 Nov 17.
8
Hydrodynamic attraction of swimming microorganisms by surfaces.表面对游动微生物的流体动力学吸引
Phys Rev Lett. 2008 Jul 18;101(3):038102. doi: 10.1103/PhysRevLett.101.038102. Epub 2008 Jul 17.
9
Statistical mechanics of interacting run-and-tumble bacteria.相互作用的随机游动与翻滚细菌的统计力学
Phys Rev Lett. 2008 May 30;100(21):218103. doi: 10.1103/PhysRevLett.100.218103. Epub 2008 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验