Suppr超能文献

杯状子叶2和3基因对拟南芥叶序具有分生组织后效应。

The CUP-SHAPED COTYLEDON2 and 3 genes have a post-meristematic effect on Arabidopsis thaliana phyllotaxis.

作者信息

Burian Agata, Raczyńska-Szajgin Magdalena, Borowska-Wykręt Dorota, Piatek Agnieszka, Aida Mitsuhiro, Kwiatkowska Dorota

机构信息

Department of Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland and Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.

Department of Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland and Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan

出版信息

Ann Bot. 2015 Apr;115(5):807-20. doi: 10.1093/aob/mcv013. Epub 2015 Feb 12.

Abstract

BACKGROUND AND AIMS

The arrangement of flowers in inflorescence shoots of Arabidopsis thaliana represents a regular spiral Fibonacci phyllotaxis. However, in the cuc2 cuc3 double mutant, flower pedicels are fused to the inflorescence stem, and phyllotaxis is aberrant in the mature shoot regions. This study examined the causes of this altered development, and in particular whether the mutant phenotype is a consequence of defects at the shoot apex, or whether post-meristematic events are involved.

METHODS

The distribution of flower pedicels and vascular traces was examined in cross-sections of mature shoots; sequential replicas were used to investigate the phyllotaxis and geometry of shoot apices, and growth of the young stem surface. The expression pattern of CUC3 was analysed by examining its promoter activity.

KEY RESULTS

Phyllotaxis irregularity in the cuc2 cuc3 double mutant arises during the post-meristematic phase of shoot development. In particular, growth and cell divisions in nodes of the elongating stem are not restricted in the mutant, resulting in pedicel-stem fusion. On the other hand, phyllotaxis in the mutant shoot apex is nearly as regular as that of the wild type. Vascular phyllotaxis, generated almost simultaneously with the phyllotaxis at the apex, is also much more regular than pedicel phyllotaxis. The most apparent phenotype of the mutant apices is a higher number of contact parastichies. This phenotype is associated with increased meristem size, decreased angular width of primordia and a shorter plastochron. In addition, the appearance of a sharp and deep crease, a characteristic shape of the adaxial primordium boundary, is slightly delayed and reduced in the mutant shoot apices.

CONCLUSIONS

The cuc2 cuc3 double mutant displays irregular phyllotaxis in the mature shoot but not in the shoot apex, thus showing a post-meristematic effect of the mutations on phyllotaxis. The main cause of this effect is the formation of pedicel-stem fusions, leading to an alteration of the axial positioning of flowers. Phyllotaxis based on the position of vascular flower traces suggests an additional mechanism of post-meristematic phyllotaxis alteration. Higher density of flower primordia may be involved in the post-meristematic effect on phyllotaxis, whereas delayed crease formation may be involved in the fusion phenotype. Promoter activity of CUC3 is consistent with its post-meristematic role in phyllotaxis.

摘要

背景与目的

拟南芥花序枝上花的排列呈现出规则的螺旋斐波那契叶序。然而,在cuc2 cuc3双突变体中,花柄与花序茎融合,并且在成熟枝区域叶序异常。本研究探究了这种发育改变的原因,特别是突变体表型是茎尖缺陷的结果,还是涉及分生组织后事件。

方法

在成熟枝的横切面上检查花柄和维管束的分布;连续切片用于研究茎尖的叶序和几何形状以及幼茎表面的生长。通过检测CUC3的启动子活性来分析其表达模式。

关键结果

cuc2 cuc3双突变体的叶序不规则出现在茎发育的分生组织后阶段。特别是,伸长茎节中的生长和细胞分裂在突变体中不受限制,导致花柄 - 茎融合。另一方面,突变体茎尖的叶序几乎与野生型一样规则。与茎尖叶序几乎同时产生的维管束叶序也比花柄叶序规则得多。突变体茎尖最明显的表型是接触斜列线数量更多。这种表型与分生组织大小增加、原基角宽度减小和叶龄期缩短有关。此外,在突变体茎尖中,近轴原基边界的特征形状——尖锐而深的褶皱的出现略有延迟且程度减轻。

结论

cuc2 cuc3双突变体在成熟枝中表现出不规则叶序,但在茎尖中没有表现出不规则叶序,从而表明这些突变对叶序有分生组织后效应。这种效应的主要原因是花柄 - 茎融合的形成,导致花的轴向定位改变。基于维管束花迹位置的叶序表明了分生组织后叶序改变的另一种机制。较高密度的花原基可能参与了对叶序的分生组织后效应,而褶皱形成延迟可能与融合表型有关。CUC3的启动子活性与其在叶序中的分生组织后作用一致。

相似文献

1
The CUP-SHAPED COTYLEDON2 and 3 genes have a post-meristematic effect on Arabidopsis thaliana phyllotaxis.
Ann Bot. 2015 Apr;115(5):807-20. doi: 10.1093/aob/mcv013. Epub 2015 Feb 12.
6
Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation.
Plant Cell. 2006 Nov;18(11):2946-57. doi: 10.1105/tpc.106.045716. Epub 2006 Nov 22.
7
Arabidopsis homologs of the petunia hairy meristem gene are required for maintenance of shoot and root indeterminacy.
Plant Physiol. 2011 Feb;155(2):735-50. doi: 10.1104/pp.110.168757. Epub 2010 Dec 20.

引用本文的文献

1
A CUC1/auxin genetic module links cell polarity to patterned tissue growth and leaf shape diversity in crucifer plants.
Proc Natl Acad Sci U S A. 2024 Jun 25;121(26):e2321877121. doi: 10.1073/pnas.2321877121. Epub 2024 Jun 21.
3
Developmental stochasticity and variation in floral phyllotaxis.
J Plant Res. 2021 May;134(3):403-416. doi: 10.1007/s10265-021-01283-7. Epub 2021 Apr 5.
5
Phyllotaxis: from classical knowledge to molecular genetics.
J Plant Res. 2021 May;134(3):373-401. doi: 10.1007/s10265-020-01247-3. Epub 2021 Feb 7.
6
A phylogenetically conserved APETALA2/ETHYLENE RESPONSE FACTOR, ERF12, regulates Arabidopsis floral development.
Plant Mol Biol. 2020 Jan;102(1-2):39-54. doi: 10.1007/s11103-019-00936-5. Epub 2019 Dec 5.
7
WUSCHEL-RELATED HOMEOBOX 2 is a transcriptional repressor involved in lateral organ formation and separation in .
Plant Biotechnol (Tokyo). 2016;33(4):245-253. doi: 10.5511/plantbiotechnology.16.0202a. Epub 2016 Mar 19.
9
Dissecting the pathways coordinating patterning and growth by plant boundary domains.
PLoS Genet. 2019 Jan 24;15(1):e1007913. doi: 10.1371/journal.pgen.1007913. eCollection 2019 Jan.
10
Xyloglucans fucosylation defects do not alter plant boundary domain definition.
Plant Signal Behav. 2018 Feb 1;13(2):e1430545. doi: 10.1080/15592324.2018.1430545. Epub 2018 Feb 6.

本文引用的文献

2
Meristem size contributes to the robustness of phyllotaxis in Arabidopsis.
J Exp Bot. 2015 Mar;66(5):1317-24. doi: 10.1093/jxb/eru482. Epub 2014 Dec 11.
3
Cytokinin signalling inhibitory fields provide robustness to phyllotaxis.
Nature. 2014 Jan 16;505(7483):417-21. doi: 10.1038/nature12791. Epub 2013 Dec 15.
5
Sequential replicas for in vivo imaging of growing organ surfaces.
Methods Mol Biol. 2014;1080:99-110. doi: 10.1007/978-1-62703-643-6_8.
6
Diverse roles of ERECTA family genes in plant development.
J Integr Plant Biol. 2013 Dec;55(12):1238-50. doi: 10.1111/jipb.12108. Epub 2013 Oct 30.
8
An integrative model of the control of ovule primordia formation.
Plant J. 2013 Nov;76(3):446-55. doi: 10.1111/tpj.12309. Epub 2013 Sep 19.
9
The role of CORYMBOSA1/BIG and auxin in the growth of Arabidopsis pedicel and internode.
Plant Sci. 2013 Aug;209:64-74. doi: 10.1016/j.plantsci.2013.04.009. Epub 2013 May 4.
10
Systems analysis of shoot apical meristem growth and development: integrating hormonal and mechanical signaling.
Plant Cell. 2012 Oct;24(10):3907-19. doi: 10.1105/tpc.112.102194. Epub 2012 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验