Suppr超能文献

用于神经元树突树的扩散磁共振成像信号圆柱模型的数值研究。

Numerical study of a cylinder model of the diffusion MRI signal for neuronal dendrite trees.

作者信息

Van Nguyen Dang, Grebenkov Denis, Le Bihan Denis, Li Jing-Rebecca

机构信息

INRIA Saclay-Equipe DEFI, CMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France; Neurospin, CEA Saclay, F-91191 Gif sur Yvette, France.

LPMC, CNRS - Ecole Polytechnique, F-91128 Palaiseau, France.

出版信息

J Magn Reson. 2015 Mar;252:103-13. doi: 10.1016/j.jmr.2015.01.008. Epub 2015 Jan 28.

Abstract

We study numerically how the neuronal dendrite tree structure can affect the diffusion magnetic resonance imaging (dMRI) signal in brain tissue. For a large set of randomly generated dendrite trees, synthetic dMRI signals are computed and fitted to a cylinder model to estimate the effective longitudinal diffusivity D(L) in the direction of neurites. When the dendrite branches are short compared to the diffusion length, D(L) depends significantly on the ratio between the average branch length and the diffusion length. In turn, D(L) has very weak dependence on the distribution of branch lengths and orientations of a dendrite tree, and the number of branches per node. We conclude that the cylinder model which ignores the connectivity of the dendrite tree, can still be adapted to describe the apparent diffusion coefficient in brain tissue.

摘要

我们通过数值研究神经元树突结构如何影响脑组织中的扩散磁共振成像(dMRI)信号。对于大量随机生成的树突结构,计算合成dMRI信号并将其拟合到圆柱模型,以估计神经突方向上的有效纵向扩散率D(L)。当树突分支长度与扩散长度相比很短时,D(L)显著取决于平均分支长度与扩散长度之间的比率。反过来,D(L)对树突结构的分支长度分布、方向以及每个节点的分支数量的依赖性非常弱。我们得出结论,忽略树突结构连通性的圆柱模型仍然可以用于描述脑组织中的表观扩散系数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验