Suppr超能文献

药物纳米载体的可控药物释放

Controlled Drug Release from Pharmaceutical Nanocarriers.

作者信息

Lee Jinhyun Hannah, Yeo Yoon

机构信息

College of Pharmacy and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.

College of Pharmacy and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA ; Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea.

出版信息

Chem Eng Sci. 2015 Mar 24;125:75-84. doi: 10.1016/j.ces.2014.08.046.

Abstract

Nanocarriers providing spatiotemporal control of drug release contribute to reducing toxicity and improving therapeutic efficacy of a drug. On the other hand, nanocarriers face unique challenges in controlling drug release kinetics, due to the large surface area per volume ratio and the short diffusion distance. To develop nanocarriers with desirable release kinetics for target applications, it is important to understand the mechanisms by which a carrier retains and releases a drug, the effects of composition and morphology of the carrier on the drug release kinetics, and current techniques for preparation and modification of nanocarriers. This review provides an overview of drug release mechanisms and various nanocarriers with a specific emphasis on approaches to control the drug release kinetics.

摘要

能够实现药物释放时空控制的纳米载体有助于降低药物毒性并提高治疗效果。另一方面,由于纳米载体每单位体积的表面积大且扩散距离短,在控制药物释放动力学方面面临独特挑战。为开发适用于目标应用的具有理想释放动力学的纳米载体,了解载体保留和释放药物的机制、载体组成和形态对药物释放动力学的影响以及当前纳米载体的制备和改性技术非常重要。本综述概述了药物释放机制和各种纳米载体,特别强调了控制药物释放动力学的方法。

相似文献

1
Controlled Drug Release from Pharmaceutical Nanocarriers.
Chem Eng Sci. 2015 Mar 24;125:75-84. doi: 10.1016/j.ces.2014.08.046.
2
Targeted multifunctional lipid-based nanocarriers for image-guided drug delivery.
Anticancer Agents Med Chem. 2007 Jul;7(4):425-40. doi: 10.2174/187152007781058613.
3
General method for the quantification of drug loading and release kinetics of nanocarriers.
Eur J Pharm Biopharm. 2017 Jul;116:131-137. doi: 10.1016/j.ejpb.2016.12.015. Epub 2016 Dec 23.
6
In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery.
Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):524-539. doi: 10.1080/21691401.2018.1561457.
7
Recent advances of drug delivery nanocarriers in osteosarcoma treatment.
J Cancer. 2020 Jan 1;11(1):69-82. doi: 10.7150/jca.36588. eCollection 2020.
8
Multifunctional Nanocarriers for Lung Drug Delivery.
Nanomaterials (Basel). 2020 Jan 21;10(2):183. doi: 10.3390/nano10020183.
9
Modeling drug-carrier interaction in the drug release from nanocarriers.
J Drug Deliv. 2011;2011:370308. doi: 10.1155/2011/370308. Epub 2011 Aug 10.
10
Polybutylcyanoacrylate nanocarriers as promising targeted drug delivery systems.
J Drug Target. 2015;23(6):481-96. doi: 10.3109/1061186X.2015.1020426. Epub 2015 Mar 4.

引用本文的文献

2
Formulation and development of thymoquinone-loaded ufasome hydrogel for effective treatment of onychomycosis.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Aug 14. doi: 10.1007/s00210-025-04505-0.
6
8
Smart Bioinoculants for : Controlled Release of and the Role of Naringin in Symbiosis Enhancement.
Plants (Basel). 2025 May 24;14(11):1601. doi: 10.3390/plants14111601.
10
Revolutionizing Retinal Therapy: The Role of Nanoparticle Drug Carriers in Managing Vascular Retinal Disorders.
Clin Ophthalmol. 2025 May 15;19:1565-1582. doi: 10.2147/OPTH.S503273. eCollection 2025.

本文引用的文献

2
Extracellularly activatable nanocarriers for drug delivery to tumors.
Expert Opin Drug Deliv. 2014 Oct;11(10):1601-1618. doi: 10.1517/17425247.2014.930434. Epub 2014 Jun 20.
3
Surface engineering of liposomes for stealth behavior.
Pharmaceutics. 2013 Oct 25;5(4):542-69. doi: 10.3390/pharmaceutics5040542.
4
Extracellular stability of nanoparticulate drug carriers.
Arch Pharm Res. 2014 Jan;37(1):16-23. doi: 10.1007/s12272-013-0286-0. Epub 2013 Nov 12.
5
Stimuli-responsive nanocarriers for drug delivery.
Nat Mater. 2013 Nov;12(11):991-1003. doi: 10.1038/nmat3776.
7
Active drug encapsulation and release kinetics from hydrogel-in-liposome nanoparticles.
J Colloid Interface Sci. 2013 Sep 15;406:247-55. doi: 10.1016/j.jcis.2013.05.081. Epub 2013 Jun 13.
8
Interpenetrating polymer network of locust bean gum-poly (vinyl alcohol) for controlled release drug delivery.
Carbohydr Polym. 2013 Apr 15;94(1):456-67. doi: 10.1016/j.carbpol.2013.01.070. Epub 2013 Jan 30.
9
Enzyme-activated nanoconjugates for tunable release of doxorubicin in hepatic cancer cells.
Biomaterials. 2013 Jun;34(19):4655-66. doi: 10.1016/j.biomaterials.2013.02.070. Epub 2013 Mar 22.
10
A liposome-based antigen delivery system using pH-sensitive fusogenic polymers for cancer immunotherapy.
Biomaterials. 2013 Apr;34(12):3042-52. doi: 10.1016/j.biomaterials.2012.12.031. Epub 2013 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验