Department of Electronics and Communication Engineering, Dr. B.R. Ambedkar National Institute of Technology Jalandhar, Jalandhar 144 011, India.
Department of Instrumentation and Control Engineering, Dr. B.R. Ambedkar National Institute of Technology Jalandhar, Jalandhar 144 011, India.
J Adv Res. 2013 Jul;4(4):331-44. doi: 10.1016/j.jare.2012.05.007. Epub 2012 Jul 6.
The performance of computer aided ECG analysis depends on the precise and accurate delineation of QRS-complexes. This paper presents an application of K-Nearest Neighbor (KNN) algorithm as a classifier for detection of QRS-complex in ECG. The proposed algorithm is evaluated on two manually annotated standard databases such as CSE and MIT-BIH Arrhythmia database. In this work, a digital band-pass filter is used to reduce false detection caused by interference present in ECG signal and further gradient of the signal is used as a feature for QRS-detection. In addition the accuracy of KNN based classifier is largely dependent on the value of K and type of distance metric. The value of K = 3 and Euclidean distance metric has been proposed for the KNN classifier, using fivefold cross-validation. The detection rates of 99.89% and 99.81% are achieved for CSE and MIT-BIH databases respectively. The QRS detector obtained a sensitivity Se = 99.86% and specificity Sp = 99.86% for CSE database, and Se = 99.81% and Sp = 99.86% for MIT-BIH Arrhythmia database. A comparison is also made between proposed algorithm and other published work using CSE and MIT-BIH Arrhythmia databases. These results clearly establishes KNN algorithm for reliable and accurate QRS-detection.
计算机辅助 ECG 分析的性能取决于 QRS 复合体的精确和准确描绘。本文提出了一种将 K-最近邻(KNN)算法应用于 ECG 中 QRS 复合体检测的分类器。该算法在两个手动标注的标准数据库(如 CSE 和 MIT-BIH 心律失常数据库)上进行了评估。在这项工作中,使用数字带通滤波器来减少 ECG 信号中存在的干扰引起的误检,并且进一步将信号的梯度用作 QRS 检测的特征。此外,KNN 分类器的准确性在很大程度上取决于 K 的值和距离度量的类型。使用五重交叉验证,为 KNN 分类器提出了 K=3 和欧几里得距离度量。对于 CSE 和 MIT-BIH 数据库,分别实现了 99.89%和 99.81%的检测率。对于 CSE 数据库,QRS 检测器的灵敏度 Se=99.86%,特异性 Sp=99.86%,对于 MIT-BIH 心律失常数据库,灵敏度 Se=99.81%,特异性 Sp=99.86%。还使用 CSE 和 MIT-BIH 心律失常数据库对提出的算法与其他已发表的工作进行了比较。这些结果清楚地证明了 KNN 算法可用于可靠和准确的 QRS 检测。