Hervé Alexandre, Bouzidi Yamina, Berthet Jean-Claude, Belkhiri Lotfi, Thuéry Pierre, Boucekkine Abdou, Ephritikhine Michel
CEA, IRAMIS, UMR 3685 NIMBE, CEA/CNRS NIMBE, CEA/Saclay , 91191 Gif-sur-Yvette, France.
Inorg Chem. 2015 Mar 2;54(5):2474-90. doi: 10.1021/acs.inorgchem.5b00034. Epub 2015 Feb 16.
Treatment of the metallacycle [UN2(N,C)] [N = N(SiMe3)2; N,C = CH2SiMe2N(SiMe3)] with [HNEt3][BPh4], [HNEt3]Cl, and [pyH][OTf] (OTf = OSO2CF3) gave the cationic compound [UN3][BPh4] (1) and the neutral complexes [UN3X] [X = Cl (3), OTf (4)], respectively. The dinuclear complex [{UN*(μ-N,C)(μ-OTf)}2] (5) and its tetrahydrofuran (THF) adduct [{UN*(N,C)(THF)(μ-OTf)}2] (6) were obtained by thermal decomposition of 4. The successive addition of NEt4CN or KCN to 1 led to the formation of the cyanido-bridged dinuclear compound [(UN3)2(μ-CN)][BPh4] (7) and the mononuclear mono- and bis(cyanide) complexes [UN3(CN)] (2) and [M][UN3(CN)2] [M = NEt4 (8), K(THF)4 (9)], while crystals of [K(18-crown-6)][UN3(CN)2] (10) were obtained by the oxidation of [K(18-crown-6)][UN3(CN)] with pyridine N-oxide. The THF adduct of 1, [UN3(THF)][BPh4], and complexes 2-7, 9 and 10 were characterized by their X-ray crystal structure. In contrast to their U(III) analogues [NMe4][UN3(CN)] and [K(18-crown-6)]2[UN3(CN)2] in which the CN anions are coordinated to the metal center via the C atom, complexes 2 and 9 exhibit the isocyanide U-NC coordination mode of the cyanide ligand. This U(III)/U(IV) differentiation has been analyzed using density functional theory calculations. The observed preferential coordinations are well explained considering the electronic structures of the different species and metal-ligand bonding energies. A comparison of the different quantum descriptors, i.e., bond orders, NPA/QTAIM data, and energy decomposition analysis, has allowed highlighting of the subtle balance between covalent, ionic, and steric factors that govern the U-CN/NC bonding.
用[HNEt₃][BPh₄]、[HNEt₃]Cl和[pyH][OTf](OTf = OSO₂CF₃)处理金属环化合物[UN₂(N,C)] [N = N(SiMe₃)₂;N,C = CH₂SiMe₂N(SiMe₃)],分别得到阳离子化合物[UN₃][BPh₄](1)和中性配合物[UN₃X] [X = Cl(3),OTf(4)]。通过4的热分解得到双核配合物[{UN*(μ-N,C)(μ-OTf)}₂](5)及其四氢呋喃(THF)加合物[{UN*(N,C)(THF)(μ-OTf)}₂](6)。向1中依次加入NEt₄CN或KCN,导致形成氰基桥联的双核化合物[(UN₃)₂(μ-CN)][BPh₄](7)以及单核单氰化物和双氰化物配合物[UN₃(CN)](2)和[M][UN₃(CN)₂] [M = NEt₄(8),K(THF)₄(9)],而通过用吡啶N-氧化物氧化[K(18-冠-6)][UN₃(CN)]得到[K(18-冠-6)][UN₃(CN)₂](10)的晶体。1的THF加合物[UN₃(THF)][BPh₄]以及配合物2 - 7、9和10通过其X射线晶体结构进行了表征。与它们的U(III)类似物[NMe₄][UN₃(CN)]和[K(18-冠-6)]₂[UN₃(CN)₂]不同,在后者中CN⁻阴离子通过C原子与金属中心配位,配合物2和9表现出氰化物配体的异氰化物U-NC配位模式。使用密度泛函理论计算对这种U(III)/U(IV)差异进行了分析。考虑到不同物种的电子结构和金属 - 配体键能,观察到的优先配位情况得到了很好的解释。对不同量子描述符(即键级、NPA/QTAIM数据和能量分解分析)的比较,突出了控制U-CN/NC键合的共价、离子和空间因素之间的微妙平衡。