Suppr超能文献

药物安全性荟萃分析:前景与陷阱

Drug safety meta-analysis: promises and pitfalls.

作者信息

Stoto Michael A

机构信息

Department of Health Systems Administration, School of Nursing and Health Studies, Georgetown University, St. Mary's Hall, Room 236, 3700 Reservoir Road NW, Washington, DC, 20057, USA,

出版信息

Drug Saf. 2015 Mar;38(3):233-43. doi: 10.1007/s40264-015-0268-x.

Abstract

Meta-analysis has increasingly been used to identify adverse effects of drugs and vaccines, but the results have often been controversial. In one respect, meta-analysis is an especially appropriate tool in these settings. Efficacy studies are often too small to reliably assess risks that become important when a medication is in widespread use, so meta-analysis, which is a statistically efficient way to pool evidence from similar studies, seems like a natural approach. But, as the examples in this paper illustrate, different syntheses can come to qualitatively different conclusions, and the results of any one analysis are usually not as precise as they seem to be. There are three reasons for this: the adverse events of interest are rare, standard meta-analysis methods may not be appropriate for the clinical and methodological heterogeneity that is common in these studies, and adverse effects are not always completely or consistently reported. To address these problems, analysts should explore heterogeneity and use random-effects or more complex statistical methods, and use multiple statistical models to see how dependent the results are to the choice of models.

摘要

荟萃分析越来越多地被用于识别药物和疫苗的不良反应,但其结果往往存在争议。一方面,荟萃分析在这些情况下是一种特别合适的工具。疗效研究往往规模太小,无法可靠地评估药物广泛使用时变得重要的风险,因此荟萃分析作为一种汇总相似研究证据的统计有效方法,似乎是一种自然的方法。但是,正如本文中的例子所示,不同的综合分析可能会得出质的不同的结论,而且任何一项分析的结果通常都没有看起来那么精确。原因有三个:感兴趣的不良事件很少见,标准的荟萃分析方法可能不适用于这些研究中常见的临床和方法学异质性,而且不良反应并不总是得到完整或一致的报告。为了解决这些问题,分析人员应探索异质性,使用随机效应或更复杂的统计方法,并使用多种统计模型来查看结果对模型选择的依赖程度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验