Suppr超能文献

贝叶斯稀疏建模识别安全性数据分析中高危亚组。

Bayesian sparse modeling to identify high-risk subgroups in meta-analysis of safety data.

机构信息

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA.

出版信息

Res Synth Methods. 2022 Nov;13(6):807-820. doi: 10.1002/jrsm.1597. Epub 2022 Aug 26.

Abstract

Meta-analysis allows researchers to combine evidence from multiple studies, making it a powerful tool for synthesizing information on the safety profiles of new medical interventions. There is a critical need to identify subgroups at high risk of experiencing treatment-related toxicities. However, this remains quite challenging from a statistical perspective as there are a variety of clinical risk factors that may be relevant for different types of adverse events, and adverse events of interest may be rare or incompletely reported. We frame this challenge as a variable selection problem and propose a Bayesian hierarchical model which incorporates a horseshoe prior on the interaction terms to identify high-risk groups. Our proposed model is motivated by a meta-analysis of adverse events in cancer immunotherapy, and our results uncover key factors driving the risk of specific types of treatment-related adverse events.

摘要

元分析使研究人员能够合并来自多个研究的证据,从而成为综合新医疗干预措施安全性特征信息的有力工具。从统计学角度来看,确定有较高风险经历治疗相关毒性的亚组至关重要。然而,这仍然具有很大的挑战性,因为可能有各种临床危险因素与不同类型的不良事件相关,并且感兴趣的不良事件可能很少或未完全报告。我们将这一挑战框定为变量选择问题,并提出了一种贝叶斯层次模型,该模型在交互项上采用了马氏先验,以识别高风险组。我们提出的模型是基于癌症免疫治疗不良事件的元分析,我们的结果揭示了驱动特定类型治疗相关不良事件风险的关键因素。

相似文献

4
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
5
7
A Bayesian Meta-analysis Method for Estimating Risk Difference of Rare Events.
J Biopharm Stat. 2018;28(3):550-561. doi: 10.1080/10543406.2017.1372767. Epub 2017 Oct 20.
9

本文引用的文献

1
On Bayesian modeling of censored data in JAGS.在 JAGS 中对删失数据进行贝叶斯建模。
BMC Bioinformatics. 2022 Mar 23;23(1):102. doi: 10.1186/s12859-021-04496-8.
4
Immune-Related Adverse Events: A Case-Based Approach.免疫相关不良事件:基于病例的方法
Front Oncol. 2019 Jun 20;9:530. doi: 10.3389/fonc.2019.00530. eCollection 2019.
8
Adverse Events in Cancer Immunotherapy.癌症免疫治疗中的不良事件
Adv Exp Med Biol. 2017;995:155-174. doi: 10.1007/978-3-319-53156-4_8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验