Suppr超能文献

中央葡萄糖代谢的代谢重编程:杜氏利什曼原虫在氧化应激期间生存的关键策略。

Metabolic reconfiguration of the central glucose metabolism: a crucial strategy of Leishmania donovani for its survival during oxidative stress.

作者信息

Ghosh Ayan K, Sardar Abul H, Mandal Abhishek, Saini Savita, Abhishek Kumar, Kumar Ashish, Purkait Bidyut, Singh Ruby, Das Sushmita, Mukhopadhyay Rupkatha, Roy Syamal, Das Pradeep

机构信息

*Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India.

*Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna, Bihar, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India; Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India; and Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India

出版信息

FASEB J. 2015 May;29(5):2081-98. doi: 10.1096/fj.14-258624. Epub 2015 Feb 17.

Abstract

Understanding the mechanism that allows the intracellular protozoan parasite Leishmania donovani (Ld) to respond to reactive oxygen species (ROS) is of increasing therapeutic importance because of the continuing resistance toward antileishmanial drugs and for determining the illusive survival strategy of these parasites. A shift in primary carbon metabolism is the fastest response to oxidative stress. A (14)CO2 evolution study, expression of glucose transporters together with consumption assays, indicated a shift in metabolic flux of the parasites from glycolysis toward pentose phosphate pathway (PPP) when exposed to different oxidants in vitro/ex vivo. Changes in gene expression, protein levels, and enzyme activities all pointed to a metabolic reconfiguration of the central glucose metabolism in response to oxidants. Generation of glucose-6-phosphate dehydrogenase (G6PDH) (∼5-fold) and transaldolase (TAL) (∼4.2-fold) overexpressing Ld cells reaffirmed that lethal doses of ROS were counterbalanced by effective manipulation of NADPH:NADP(+) ratio and stringent maintenance of reduced thiol content. The extent of protein carbonylation and accumulation of lipid peroxidized products were also found to be less in overexpressed cell lines. Interestingly, the LD50 of sodium antimony gluconate (SAG), amphotericin-B (AmB), and miltefosine were significantly high toward overexpressing parasites. Consequently, this study illustrates that Ld strategizes a metabolic reconfiguration for replenishment of NADPH pool to encounter oxidative challenges.

摘要

由于对抗利什曼原虫药物的持续耐药性以及确定这些寄生虫难以捉摸的生存策略,了解允许细胞内原生动物寄生虫杜氏利什曼原虫(Ld)对活性氧(ROS)作出反应的机制具有越来越重要的治疗意义。初级碳代谢的转变是对氧化应激的最快反应。一项¹⁴CO₂释放研究、葡萄糖转运蛋白的表达以及消耗测定表明,当寄生虫在体外/体内暴露于不同氧化剂时,其代谢通量从糖酵解转向磷酸戊糖途径(PPP)。基因表达、蛋白质水平和酶活性的变化均表明,中央葡萄糖代谢因氧化剂而发生代谢重构。葡萄糖-6-磷酸脱氢酶(G6PDH)(约5倍)和转醛醇酶(TAL)(约4.2倍)过表达的Ld细胞的产生再次证实,致死剂量的ROS通过有效调节NADPH:NADP⁺比例和严格维持还原型硫醇含量而得到平衡。在过表达的细胞系中,蛋白质羰基化程度和脂质过氧化产物的积累也较少。有趣的是,葡萄糖酸锑钠(SAG)、两性霉素B(AmB)和米替福新对过表达寄生虫的半数致死剂量(LD50)显著更高。因此,本研究表明,Ld通过代谢重构来补充NADPH库,以应对氧化挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验