Suppr超能文献

用于组织工程支架的导电纳米结构聚吡咯-聚己内酯包覆镁/聚乳酸-羟基乙酸共聚物复合材料的设计与表征

Design and characterization of a conductive nanostructured polypyrrole-polycaprolactone coated magnesium/PLGA composite for tissue engineering scaffolds.

作者信息

Liu Haixia, Wang Ran, Chu Henry K, Sun Dong

机构信息

Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.

School of Instrument Science and Optoelectronic Engineering, Beihang University, Beijing, 100191, China.

出版信息

J Biomed Mater Res A. 2015 Sep;103(9):2966-73. doi: 10.1002/jbm.a.35428. Epub 2015 Mar 11.

Abstract

A novel biodegradable and conductive composite consisting of magnesium (Mg), polypyrrole-block-ploycaprolactone (PPy-PCL), and poly(lactic-co-glycolic acid) (PLGA) is synthesized in a core-shell-skeleton manner for tissue engineering applications. Mg particles in the composite are first coated with a conductive nanostructured PPy-PCL layer for corrosion resistance via the UV-induced photopolymerization method. PLGA matrix is then added to tailor the biodegradability of the resultant composite. Composites with different composition ratios are examined through experiments, and their material properties are characterized. The in vitro experiments on culture of 293FT-GFP cells show that the composites are suitable for cell growth and culture. Biodegradability of the composite is also evaluated. By adding PLGA matrix to the composite, the degrading time of the composite can last for more than eight weeks, hence providing a longer period for tissue formation as compared to Mg composites or alloys. The findings of this research will offer a new opportunity to utilize a conductive, nanostructured-coated Mg/PLGA composite as the scaffold material for implants and tissue regeneration.

摘要

一种新型的可生物降解导电复合材料,由镁(Mg)、聚吡咯-嵌段-聚己内酯(PPy-PCL)和聚乳酸-羟基乙酸共聚物(PLGA)组成,采用核壳骨架方式合成,用于组织工程应用。首先通过紫外线诱导光聚合方法,在复合材料中的镁颗粒上包覆一层导电纳米结构的PPy-PCL层,以提高耐腐蚀性。然后添加PLGA基体来调整所得复合材料的生物降解性。通过实验研究了不同组成比例的复合材料,并对其材料性能进行了表征。对293FT-GFP细胞进行体外培养实验表明,该复合材料适合细胞生长和培养。还评估了复合材料的生物降解性。通过向复合材料中添加PLGA基体,复合材料的降解时间可长达八周以上,因此与镁复合材料或合金相比,可为组织形成提供更长的时间。本研究结果将为利用导电的、纳米结构涂层的Mg/PLGA复合材料作为植入物和组织再生的支架材料提供新的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验