Suppr超能文献

分层设计的骨支架:从内部线索到外部刺激。

Hierarchically designed bone scaffolds: From internal cues to external stimuli.

机构信息

Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.

Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77251-1892, USA.

出版信息

Biomaterials. 2019 Oct;218:119334. doi: 10.1016/j.biomaterials.2019.119334. Epub 2019 Jul 3.

Abstract

Bone tissue engineering utilizes three critical elements - cells, scaffolds, and bioactive factors - to recapitulate the bone tissue microenvironment, inducing the formation of new bone. Recent advances in materials development have enabled the production of scaffolds that more effectively mimic the hierarchical features of bone matrix, ranging from molecular composition to nano/micro-scale biochemical and physical features. This review summarizes recent advances within the field in utilizing these features of native bone to guide the hierarchical design of materials and scaffolds. Biomimetic strategies discussed in this review cover several levels of hierarchical design, including the development of element-doped compositions of bioceramics, the usage of molecular templates for in vitro biomineralization at the nanoscale, the fabrication of biomimetic scaffold architecture at the micro- and nanoscale, and the application of external physical stimuli at the macroscale to regulate bone growth. Developments at each level are discussed with an emphasis on their in vitro and in vivo outcomes in promoting osteogenic tissue development. Ultimately, these hierarchically designed scaffolds can complement or even replace the usage of cells and biological elements, which present clinical and regulatory barriers to translation. As the field progresses ever closer to clinical translation, the creation of viable therapies will thus benefit from further development of hierarchically designed materials and scaffolds.

摘要

骨组织工程利用细胞、支架和生物活性因子这三个关键要素来模拟骨组织微环境,从而诱导新骨的形成。近年来,材料的发展使得支架的生产能够更有效地模拟骨基质的层次特征,从分子组成到纳米/微观尺度的生化和物理特征。本综述总结了利用天然骨的这些特征来指导材料和支架的层次设计的最新进展。本文讨论的仿生策略涵盖了几个层次的设计,包括生物陶瓷的元素掺杂成分的开发、纳米尺度体外生物矿化的分子模板的使用、微纳尺度仿生支架结构的制造以及宏观尺度的外部物理刺激在调节骨生长方面的应用。在讨论每个层次的发展时,重点介绍了它们在促进成骨组织发育方面的体外和体内结果。最终,这些层次设计的支架可以补充甚至取代细胞和生物元素的使用,而细胞和生物元素在转化方面存在临床和监管方面的障碍。随着该领域越来越接近临床转化,可行治疗方法的创建将受益于进一步开发层次设计的材料和支架。

相似文献

1
Hierarchically designed bone scaffolds: From internal cues to external stimuli.
Biomaterials. 2019 Oct;218:119334. doi: 10.1016/j.biomaterials.2019.119334. Epub 2019 Jul 3.
2
Biomimetic nanofibrous scaffolds for bone tissue engineering.
Biomaterials. 2011 Dec;32(36):9622-9. doi: 10.1016/j.biomaterials.2011.09.009. Epub 2011 Sep 25.
3
Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering.
Adv Healthc Mater. 2017 Dec;6(23). doi: 10.1002/adhm.201700612. Epub 2017 Nov 24.
5
Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models.
Acta Biomater. 2017 Oct 15;62:1-28. doi: 10.1016/j.actbio.2017.08.030. Epub 2017 Aug 24.
6
A Novel 3D-bioprinted Porous Nano Attapulgite Scaffolds with Good Performance for Bone Regeneration.
Int J Nanomedicine. 2020 Sep 22;15:6945-6960. doi: 10.2147/IJN.S254094. eCollection 2020.
7
Biomimesis and biomorphic transformations: new concepts applied to bone regeneration.
J Biotechnol. 2011 Dec 20;156(4):347-55. doi: 10.1016/j.jbiotec.2011.07.034. Epub 2011 Aug 3.
8
Nanofibrous Microspheres: A Biomimetic Platform for Bone Tissue Regeneration.
ACS Appl Bio Mater. 2024 Jul 15;7(7):4270-4292. doi: 10.1021/acsabm.4c00613. Epub 2024 Jul 1.

引用本文的文献

3
Structurally and Functionally Adaptive Biomimetic Periosteum: Materials, Fabrication, and Construction Strategies.
Exploration (Beijing). 2025 Feb 27;5(3):70005. doi: 10.1002/EXP.70005. eCollection 2025 Jun.
4
Revolutionizing neural regeneration with smart responsive materials: Current insights and future prospects.
Bioact Mater. 2025 Jun 13;52:393-421. doi: 10.1016/j.bioactmat.2025.06.003. eCollection 2025 Oct.
5
Functionalized zeolite regulates bone metabolic microenvironment.
Mater Today Bio. 2025 Feb 5;31:101558. doi: 10.1016/j.mtbio.2025.101558. eCollection 2025 Apr.
6
Piezoelectric biomaterials for providing electrical stimulation in bone tissue engineering: Barium titanate.
J Orthop Translat. 2025 Feb 4;51:94-107. doi: 10.1016/j.jot.2024.12.011. eCollection 2025 Mar.
8
A mechanistic overview on green assisted formulation of nanocomposites and their multifunctional role in biomedical applications.
Heliyon. 2025 Jan 8;11(3):e41654. doi: 10.1016/j.heliyon.2025.e41654. eCollection 2025 Feb 15.
9
Oriented Cortical-Bone-Like Silk Protein Lamellae Effectively Repair Large Segmental Bone Defects in Pigs.
Adv Mater. 2025 Mar;37(10):e2414543. doi: 10.1002/adma.202414543. Epub 2025 Jan 28.
10
Advancements in nanohydroxyapatite: synthesis, biomedical applications and composite developments.
Regen Biomater. 2024 Nov 5;12:rbae129. doi: 10.1093/rb/rbae129. eCollection 2025.

本文引用的文献

1
The synergistic effect of a hybrid graphene oxide-chitosan system and biomimetic mineralization on osteoblast functions.
Biomater Sci. 2014 Feb 23;2(2):264-274. doi: 10.1039/c3bm60192g. Epub 2013 Oct 30.
3
Nanocrystalline silicon substituted hydroxyapatite effects on osteoclast differentiation and resorptive activity.
J Mater Chem B. 2014 May 21;2(19):2910-2919. doi: 10.1039/c3tb21697g. Epub 2014 Apr 8.
4
Spatiotemporal Control of Growth Factors in Three-Dimensional Printed Scaffolds.
Bioprinting. 2018 Dec;12. doi: 10.1016/j.bprint.2018.e00032. Epub 2018 Sep 20.
6
3D printed polymer-mineral composite biomaterials for bone tissue engineering: Fabrication and characterization.
J Biomed Mater Res B Appl Biomater. 2019 Nov;107(8):2579-2595. doi: 10.1002/jbm.b.34348. Epub 2019 Mar 8.
7
Chasing the Paradigm: Clinical Translation of 25 Years of Tissue Engineering.
Tissue Eng Part A. 2019 May;25(9-10):679-687. doi: 10.1089/ten.TEA.2019.0032.
8
Progress in three-dimensional printing with growth factors.
J Control Release. 2019 Feb 10;295:50-59. doi: 10.1016/j.jconrel.2018.12.035. Epub 2018 Dec 20.
9
Near-infrared light control of bone regeneration with biodegradable photothermal osteoimplant.
Biomaterials. 2019 Feb;193:1-11. doi: 10.1016/j.biomaterials.2018.12.008. Epub 2018 Dec 10.
10
Integrating 3D Printing and Biomimetic Mineralization for Personalized Enhanced Osteogenesis, Angiogenesis, and Osteointegration.
ACS Appl Mater Interfaces. 2018 Dec 12;10(49):42146-42154. doi: 10.1021/acsami.8b17495. Epub 2018 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验