Luo Nana, Ni Dezhi, Yue Hua, Wei Wei, Ma Guanghui
National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing, 100190, PR China.
ACS Appl Mater Interfaces. 2015 Mar 11;7(9):5239-47. doi: 10.1021/am5084607. Epub 2015 Feb 26.
The "nano-bio" interface profoundly shapes the interaction between cells and nanomaterials and can even decide a cell's fate. As a nascent two-dimensional material, graphene has many unique attributes and is proposed to be a promising candidate for biomedical applications. Thus, for graphene-based applications, it is necessary to clarify how the graphene surface navigates biological outcomes when encountering "janitorial" cells (macrophages). For this purpose, we synthesized nanographene oxide (nGO) and engineered the surface with polyethylene glycol (PEG), bovine serum albumin (BSA), and poly(ether imide) (PEI). In contrast to pristine nGO, decoration with PEG and BSA hindered endocytosis and improved their benignancy toward macrophages. Contrarily, nGO-PEI commenced with favorable endocytosis but then suffered stagnation due to compromised macrophage viability. To unravel the underlying mechanisms regulating these diverse macrophage fates, we built a stepwise analysis. Compared to the others, nGO-PEI tended to interact electrostatically with mitochondria after their cellular internalization. Such an unexpected encounter disrupted the normal potential and integrity of mitochondria and then elicited an alteration in reactive oxygen species and cytochrome c. These responses further initiated the activation of the caspase family and ultimately dictated cells to undergo apoptosis. The advances described above will complement our knowledge of graphene functionality and serve to guide its application in biotechnological applications.
“纳米 - 生物”界面深刻地塑造了细胞与纳米材料之间的相互作用,甚至能够决定细胞的命运。作为一种新兴的二维材料,石墨烯具有许多独特的特性,被认为是生物医学应用的一个有前途的候选材料。因此,对于基于石墨烯的应用,有必要阐明当石墨烯表面遇到“清洁”细胞(巨噬细胞)时,它是如何引导生物学结果的。为此,我们合成了纳米氧化石墨烯(nGO),并用聚乙二醇(PEG)、牛血清白蛋白(BSA)和聚醚酰亚胺(PEI)对其表面进行了工程化处理。与原始的nGO相比,用PEG和BSA修饰可阻碍内吞作用,并提高其对巨噬细胞的良性。相反,nGO - PEI开始时具有良好的内吞作用,但随后由于巨噬细胞活力受损而停滞。为了揭示调节这些不同巨噬细胞命运的潜在机制,我们进行了逐步分析。与其他材料相比,nGO - PEI在细胞内化后倾向于与线粒体发生静电相互作用。这种意外的相遇破坏了线粒体的正常电位和完整性,进而引发了活性氧和细胞色素c的改变。这些反应进一步启动了半胱天冬酶家族的激活,最终导致细胞凋亡。上述进展将补充我们对石墨烯功能的认识,并有助于指导其在生物技术应用中的应用。