†Samsung-SKKU Graphene Center and School of Electronics and Electrical Engineering, Sungkyunkwan University, Suwon 440-746, Korea.
‡SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea.
ACS Nano. 2015 Mar 24;9(3):2368-76. doi: 10.1021/acsnano.5b00153. Epub 2015 Feb 18.
Despite growing interest in doping two-dimensional (2D) transition metal dichalcogenides (TMDs) for future layered semiconductor devices, controllability is currently limited to only heavy doping (degenerate regime). This causes 2D materials to act as metallic layers, and an ion implantation technique with precise doping controllability is not available for these materials (e.g., MoS2, MoSe2, WS2, WSe2, graphene). Since adjustment of the electrical and optical properties of 2D materials is possible within a light (nondegenerate) doping regime, a wide-range doping capability including nondegenerate and degenerate regimes is a critical aspect of the design and fabrication of 2D TMD-based electronic and optoelectronic devices. Here, we demonstrate a wide-range controllable n-doping method on a 2D TMD material (exfoliated trilayer and bulk MoS2) with the assistance of a phosphorus silicate glass (PSG) insulating layer, which has the broadest doping range among the results reported to date (between 3.6 × 10(10) and 8.3 × 10(12) cm(-2)) and is also applicable to other 2D semiconductors. This is achieved through (1) a three-step process consisting of, first, dopant out-diffusion between 700 and 900 °C, second, thermal activation at 500 °C, and, third, optical activation above 5 μW steps and (2) weight percentage adjustment of P atoms in PSG (2 and 5 wt %). We anticipate our widely controllable n-doping method to be a starting point for the successful integration of future layered semiconductor devices.
尽管人们对二维(2D)过渡金属二卤化物(TMD)掺杂剂在未来层状半导体器件中的应用越来越感兴趣,但目前的可控性仅限于重掺杂(简并态)。这导致 2D 材料表现为金属层,而对于这些材料(例如 MoS2、MoSe2、WS2、WSe2、石墨烯),没有具有精确掺杂可控性的离子注入技术。由于可以在轻掺杂(非简并态)条件下调节 2D 材料的电学和光学性质,因此,在非简并和简并态范围内进行大范围掺杂的能力是设计和制造基于 2D TMD 的电子和光电子器件的关键方面。在这里,我们在磷硅玻璃(PSG)绝缘层的辅助下,展示了一种在 2D TMD 材料(剥离的三层和块状 MoS2)上的宽范围可控 n 掺杂方法,该方法的掺杂范围最广(在 3.6×10(10)和 8.3×10(12)cm(-2)之间),并且也适用于其他 2D 半导体。这是通过(1)一个三步过程实现的,首先在 700 和 900°C 之间进行掺杂剂的外扩散,其次在 500°C 下进行热激活,然后在 5μW 以上的步骤中进行光激活,以及(2)PSG 中 P 原子的重量百分比调整(2 和 5wt%)。我们预计,我们的广泛可控 n 掺杂方法将成为未来层状半导体器件成功集成的起点。