Suppr超能文献

二维过渡金属二卤族化合物的人工 DNA 和 M-DNA 的 n 型和 p 型掺杂现象。

n- and p-Type doping phenomenon by artificial DNA and M-DNA on two-dimensional transition metal dichalcogenides.

机构信息

School of Electronics and Electrical Engineering, Sungkyunkwan University , Suwon 440-746, Korea.

出版信息

ACS Nano. 2014 Nov 25;8(11):11603-13. doi: 10.1021/nn5048712. Epub 2014 Oct 29.

Abstract

Deoxyribonucleic acid (DNA) and two-dimensional (2D) transition metal dichalcogenide (TMD) nanotechnology holds great potential for the development of extremely small devices with increasingly complex functionality. However, most current research related to DNA is limited to crystal growth and synthesis. In addition, since controllable doping methods like ion implantation can cause fatal crystal damage to 2D TMD materials, it is very hard to achieve a low-level doping concentration (nondegenerate regime) on TMD in the present state of technology. Here, we report a nondegenerate doping phenomenon for TMD materials (MoS2 and WSe2, which represent n- and p-channel materials, respectively) using DNA and slightly modified DNA by metal ions (Zn(2+), Ni(2+), Co(2+), and Cu(2+)), named as M-DNA. This study is an example of interdisciplinary convergence research between DNA nanotechnology and TMD-based 2D device technology. The phosphate backbone (PO4(-)) in DNA attracts and holds hole carriers in the TMD region, n-doping the TMD films. Conversely, M-DNA nanostructures, which are functionalized by intercalating metal ions, have positive dipole moments and consequently reduce the electron carrier density of TMD materials, resulting in p-doping phenomenon. N-doping by DNA occurs at ∼6.4 × 10(10) cm(-2) on MoS2 and ∼7.3 × 10(9) cm(-2) on WSe2, which is uniform across the TMD area. p-Doping which is uniformly achieved by M-DNA occurs between 2.3 × 10(10) and 5.5 × 10(10) cm(-2) on MoS2 and between 2.4 × 10(10) and 5.0 × 10(10) cm(-2) on WSe2. These doping levels are in the nondegenerate regime, allowing for the proper design of performance parameters of TMD-based electronic and optoelectronic devices (VTH, on-/off-currents, field-effect mobility, photoresponsivity, and detectivity). In addition, by controlling the metal ions used, the p-doping level of TMD materials, which also influences their performance parameters, can be controlled. This interdisciplinary convergence research will allow for the successful integration of future layered semiconductor devices requiring extremely small and very complicated structures.

摘要

脱氧核糖核酸(DNA)和二维(2D)过渡金属二硫属化物(TMD)纳米技术在开发具有日益复杂功能的极小器件方面具有巨大潜力。然而,目前大多数与 DNA 相关的研究都局限于晶体生长和合成。此外,由于离子注入等可控掺杂方法会对 2D TMD 材料造成致命的晶体损伤,因此在现有技术条件下,很难在 TMD 上实现低掺杂浓度(非简并态)。在这里,我们报告了一种用于 TMD 材料(MoS2 和 WSe2,分别代表 n 型和 p 型材料)的非简并掺杂现象,该现象使用 DNA 和稍微经过金属离子(Zn2+、Ni2+、Co2+和 Cu2+)修饰的 DNA,称为 M-DNA。这项研究是 DNA 纳米技术和基于 TMD 的 2D 器件技术之间的交叉学科融合研究的一个例子。DNA 中的磷酸骨架(PO4(-))吸引并保持 TMD 区域中的空穴载流子,对 TMD 薄膜进行 n 掺杂。相反,由嵌入金属离子功能化的 M-DNA 纳米结构具有正偶极矩,从而降低 TMD 材料的电子载流子密度,导致 p 掺杂现象。在 MoS2 上,DNA 实现的 n 掺杂约为 6.4×10(10)cm(-2),在 WSe2 上约为 7.3×10(9)cm(-2),在 TMD 区域内是均匀的。通过 M-DNA 均匀实现的 p 掺杂在 MoS2 上约为 2.3×10(10)至 5.5×10(10)cm(-2),在 WSe2 上约为 2.4×10(10)至 5.0×10(10)cm(-2)。这些掺杂水平处于非简并态,允许适当设计基于 TMD 的电子和光电设备的性能参数(VTH、开/关电流、场效应迁移率、光响应度和探测率)。此外,通过控制所用的金属离子,可以控制 TMD 材料的 p 掺杂水平,这也会影响它们的性能参数。这项交叉学科融合研究将使未来需要极小和非常复杂结构的分层半导体器件的成功集成成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验