Department of Computer Science, Stanford University , Stanford, California 94305, United States.
Advanced Technology Research , 26650 The Old Road, Suite 208, Valencia, California 91381, United States.
ACS Appl Mater Interfaces. 2017 Feb 1;9(4):3223-3245. doi: 10.1021/acsami.6b13582. Epub 2017 Jan 17.
Transition metal dichalcogenides (TMDs) are becoming significant because of their interesting semiconducting and photonic properties. In particular, TMDs such as molybdenum disulfide (MoS), molybdenum diselenide (MoSe), tungsten disulfide (WS), tungsten diselenide (WSe), titanium disulfide (TiS), tantalum sulfide (TaS), and niobium selenide (NbSe) are increasingly attracting attention for their applications in solar cell devices. In this review, we give a brief introduction to TMDs with a focus on MoS; and thereafter, emphasize the role of atomically thin MoS layers in fabricating solar cell devices, including bulk-heterojunction, organic, and perovskites-based solar cells. Layered MoS has been used as the hole-transport layer (HTL), electron-transport layer (ETL), interfacial layer, and protective layer in fabricating heterojunction solar cells. The trilayer graphene/MoS/n-Si solar cell devices exhibit a power-conversion efficiency of 11.1%. The effects of plasma and chemical doping on the photovoltaic performance of MoS solar cells have been analyzed. After doping and electrical gating, a power-conversion efficiency (PCE) of 9.03% has been observed for the MoS/h-BN/GaAs heterostructure solar cells. The MoS-containing perovskites-based solar cells show a PCE as high as 13.3%. The PCE of MoS-based organic solar cells exceeds 8.40%. The stability of MoS solar cells measured under ambient conditions and light illumination has been discussed. The MoS-based materials show a great potential for solar cell devices along with high PCE; however, in this connection, their long-term environmental stability is also of equal importance for commercial applications.
过渡金属二硫属化物(TMDs)因其有趣的半导体和光子特性而变得非常重要。特别是,二硫化钼(MoS)、二硒化钼(MoSe)、二硫化钨(WS)、二硒化钨(WSe)、二硫化钛(TiS)、二硫化钽(TaS)和二硒化铌(NbSe)等 TMDs 因其在太阳能电池器件中的应用而受到越来越多的关注。在这篇综述中,我们简要介绍了 TMDs,重点介绍了 MoS;此后,强调了原子层厚的 MoS 层在制造太阳能电池器件中的作用,包括体异质结、有机和钙钛矿基太阳能电池。层状 MoS 已被用作空穴传输层(HTL)、电子传输层(ETL)、界面层和保护层来制造异质结太阳能电池。三层石墨烯/MoS/n-Si 太阳能电池器件的功率转换效率为 11.1%。分析了等离子体和化学掺杂对 MoS 太阳能电池光伏性能的影响。经过掺杂和电门控后,观察到 MoS/h-BN/GaAs 异质结构太阳能电池的功率转换效率(PCE)为 9.03%。含 MoS 的钙钛矿基太阳能电池的 PCE 高达 13.3%。MoS 基有机太阳能电池的 PCE 超过 8.40%。讨论了在环境条件和光照下测量的 MoS 太阳能电池的稳定性。MoS 基材料在具有高 PCE 的太阳能电池器件中具有很大的潜力;然而,在这方面,它们的长期环境稳定性对于商业应用也同样重要。