Fujino Yuri, Murata Hiroshi, Mayama Chihiro, Asaoka Ryo
Invest Ophthalmol Vis Sci. 2015 Apr;56(4):2334-9. doi: 10.1167/iovs.15-16445.
We evaluated the usefulness of various regression models, including least absolute shrinkage and selection operator (Lasso) regression, to predict future visual field (VF) progression in glaucoma patients.
Series of 10 VFs (Humphrey Field Analyzer 24-2 SITA-standard) from each of 513 eyes in 324 open-angle glaucoma patients, obtained in 4.9 ± 1.3 years (mean ± SD), were investigated. For each patient, the mean of all total deviation values (mTD) in the 10th VF was predicted using varying numbers of prior VFs (ranging from the first three VFs to all previous VFs) by applying ordinary least squares linear regression (OLSLR), M-estimator robust regression (M-robust), MM-estimator robust regression (MM-robust), skipped regression (Skipped), deepest regression (Deepest), and Lasso regression. Absolute prediction errors then were compared.
With OLSLR, prediction error varied between 5.7 ± 6.1 (using the first three VFs) and 1.2 ± 1.1 dB (using all nine previous VFs). Prediction accuracy was not significantly improved with M-robust, MM-robust, Skipped, or Deepest regression in almost all VF series; however, a significantly smaller prediction error was obtained with Lasso regression even with a small number of VFs (using first 3 VFs, 2.0 ± 2.2; using all nine previous VFs, 1.2 ± 1.1 dB).
Prediction errors using OLSLR are large when only a small number of VFs are included in the regression. Lasso regression offers much more accurate predictions, especially in short VF series.
我们评估了包括最小绝对收缩和选择算子(Lasso)回归在内的各种回归模型预测青光眼患者未来视野(VF)进展的有效性。
对324例开角型青光眼患者的513只眼中每只眼的10次视野检查结果(Humphrey视野分析仪24-2 SITA标准)进行研究,这些检查结果在4.9±1.3年(平均值±标准差)内获得。对于每位患者,通过应用普通最小二乘线性回归(OLSLR)、M估计稳健回归(M-robust)、MM估计稳健回归(MM-robust)、跳跃回归(Skipped)、深度回归(Deepest)和Lasso回归,使用不同数量的先前视野检查结果(从最初的三次视野检查到所有先前的视野检查)预测第10次视野检查中所有总偏差值(mTD)的平均值。然后比较绝对预测误差。
使用OLSLR时,预测误差在5.7±6.1(使用最初的三次视野检查)至1.2±1.1 dB(使用所有先前的九次视野检查)之间变化。在几乎所有视野系列中,M-robust、MM-robust、Skipped或Deepest回归均未显著提高预测准确性;然而,即使使用少量视野检查结果,Lasso回归也能获得显著更小的预测误差(使用最初的3次视野检查,2.0±2.2;使用所有先前的九次视野检查,1.2±1.1 dB)。
当回归中仅包含少量视野检查结果时,使用OLSLR的预测误差较大。Lasso回归提供了更准确的预测,尤其是在短视野系列中。