Suppr超能文献

一种使用青光眼患者眼内压测量值更准确地预测视野进展的新方法。

A novel method to predict visual field progression more accurately, using intraocular pressure measurements in glaucoma patients.

出版信息

Sci Rep. 2016 Aug 26;6:31728. doi: 10.1038/srep31728.

Abstract

Visual field (VF) data were retrospectively obtained from 491 eyes in 317 patients with open angle glaucoma who had undergone ten VF tests (Humphrey Field Analyzer, 24-2, SITA standard). First, mean of total deviation values (mTD) in the tenth VF was predicted using standard linear regression of the first five VFs (VF1-5) through to using all nine preceding VFs (VF1-9). Then an 'intraocular pressure (IOP)-integrated VF trend analysis' was carried out by simply using time multiplied by IOP as the independent term in the linear regression model. Prediction errors (absolute prediction error or root mean squared error: RMSE) for predicting mTD and also point wise TD values of the tenth VF were obtained from both approaches. The mTD absolute prediction errors associated with the IOP-integrated VF trend analysis were significantly smaller than those from the standard trend analysis when VF1-6 through to VF1-8 were used (p < 0.05). The point wise RMSEs from the IOP-integrated trend analysis were significantly smaller than those from the standard trend analysis when VF1-5 through to VF1-9 were used (p < 0.05). This was especially the case when IOP was measured more frequently. Thus a significantly more accurate prediction of VF progression is possible using a simple trend analysis that incorporates IOP measurements.

摘要

视野 (VF) 数据是从 317 名开角型青光眼患者的 491 只眼中回顾性获得的,这些患者接受了 10 次 VF 测试(Humphrey 视野分析仪,24-2,SITA 标准)。首先,使用前 5 次 VF(VF1-5)的标准线性回归预测第 10 次 VF 的总偏差值(mTD)的平均值,然后使用所有 9 次前 VF(VF1-9)。然后,通过将时间乘以眼压作为线性回归模型中的独立项,进行“眼压综合 VF 趋势分析”。从这两种方法中获得了预测 mTD 和第 10 次 VF 点值的预测误差(绝对预测误差或均方根误差:RMSE)。当使用 VF1-6 到 VF1-8 时,与眼压综合 VF 趋势分析相关的 mTD 绝对预测误差明显小于标准趋势分析(p < 0.05)。当使用 VF1-5 到 VF1-9 时,眼压综合趋势分析的点 RMSE 明显小于标准趋势分析(p < 0.05)。当眼压测量更频繁时尤其如此。因此,使用简单的眼压测量综合趋势分析可以更准确地预测 VF 进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b2e/4999864/db7b83dc7258/srep31728-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验