Gilles Anna F, Averof Michalis
Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, 69364 France ; BMIC graduate programme and Université Claude Bernard - Lyon 1, Lyon, France.
Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, 69364 France ; Centre National de la Recherche Scientifique (CNRS), Lyon, France.
Evodevo. 2014 Nov 18;5:43. doi: 10.1186/2041-9139-5-43. eCollection 2014.
Developmental biology, as all experimental science, is empowered by technological advances. The availability of genetic tools in some species - designated as model organisms - has driven their use as major platforms for understanding development, physiology and behavior. Extending these tools to a wider range of species determines whether (and how) we can experimentally approach developmental diversity and evolution. During the last two decades, comparative developmental biology (evo-devo) was marked by the introduction of gene knockdown and deep sequencing technologies that are applicable to a wide range of species. These approaches allowed us to test the developmental role of specific genes in diverse species, to study biological processes that are not accessible in established models and, in some cases, to conduct genome-wide screens that overcome the limitations of the candidate gene approach. The recent discovery of CRISPR/Cas as a means of precise alterations into the genome promises to revolutionize developmental genetics. In this review we describe the development of gene editing tools, from zinc-finger nucleases to TALENs and CRISPR, and examine their application in gene targeting, their limitations and the opportunities they present for evo-devo. We outline their use in gene knock-out and knock-in approaches, and in manipulating gene functions by directing molecular effectors to specific sites in the genome. The ease-of-use and efficiency of CRISPR in diverse species provide an opportunity to close the technology gap that exists between established model organisms and emerging genetically-tractable species.
发育生物学与所有实验科学一样,受益于技术进步。在某些物种(即模式生物)中可用的遗传工具推动了它们作为理解发育、生理学和行为的主要平台的应用。将这些工具扩展到更广泛的物种,决定了我们是否能够(以及如何)通过实验来研究发育多样性和进化。在过去二十年中,比较发育生物学(演化发育生物学)的特点是引入了适用于广泛物种的基因敲低和深度测序技术。这些方法使我们能够测试特定基因在不同物种中的发育作用,研究在已建立的模型中无法触及的生物学过程,并且在某些情况下,进行全基因组筛选以克服候选基因方法的局限性。最近发现的CRISPR/Cas作为一种精确改变基因组的手段,有望给发育遗传学带来变革。在这篇综述中,我们描述了从锌指核酸酶到转录激活因子样效应物核酸酶(TALENs)以及CRISPR的基因编辑工具的发展,并研究它们在基因靶向中的应用、局限性以及它们为演化发育生物学带来的机遇。我们概述了它们在基因敲除和敲入方法中的使用,以及通过将分子效应物导向基因组中的特定位点来操纵基因功能的应用。CRISPR在不同物种中的易用性和效率提供了一个机会,来弥合已建立的模式生物与新兴的遗传易处理物种之间存在的技术差距。