IEEE Trans Med Imaging. 2015 Aug;34(8):1719-29. doi: 10.1109/TMI.2015.2403285. Epub 2015 Feb 12.
This paper addresses the problem of fully-automatic localization and segmentation of 3D intervertebral discs (IVDs) from MR images. Our method contains two steps, where we first localize the center of each IVD, and then segment IVDs by classifying image pixels around each disc center as foreground (disc) or background. The disc localization is done by estimating the image displacements from a set of randomly sampled 3D image patches to the disc center. The image displacements are estimated by jointly optimizing the training and test displacement values in a data-driven way, where we take into consideration both the training data and the geometric constraint on the test image. After the disc centers are localized, we segment the discs by classifying image pixels around disc centers as background or foreground. The classification is done in a similar data-driven approach as we used for localization, but in this segmentation case we are aiming to estimate the foreground/background probability of each pixel instead of the image displacements. In addition, an extra neighborhood smooth constraint is introduced to enforce the local smoothness of the label field. Our method is validated on 3D T2-weighted turbo spin echo MR images of 35 patients from two different studies. Experiments show that compared to state of the art, our method achieves better or comparable results. Specifically, we achieve for localization a mean error of 1.6-2.0 mm, and for segmentation a mean Dice metric of 85%-88% and a mean surface distance of 1.3-1.4 mm.
本文针对从磁共振图像中全自动定位和分割三维椎间盘(IVD)的问题进行了研究。我们的方法包含两个步骤,首先定位每个 IVD 的中心,然后通过将每个椎间盘中心周围的图像像素分类为前景(椎间盘)或背景来分割 IVD。通过从一组随机采样的 3D 图像补丁估计到椎间盘中心的图像位移来完成椎间盘的定位。通过以数据驱动的方式联合优化训练和测试位移值来估计图像位移,其中我们考虑了训练数据和测试图像的几何约束。在定位到椎间盘中心后,我们通过将椎间盘中心周围的图像像素分类为背景或前景来分割椎间盘。分类采用与我们用于定位的类似的数据驱动方法,但在这种分割情况下,我们旨在估计每个像素的前景/背景概率,而不是图像位移。此外,引入了额外的邻域平滑约束,以强制标签字段的局部平滑度。我们的方法在来自两个不同研究的 35 名患者的 3D T2 加权涡轮自旋回波磁共振图像上进行了验证。实验表明,与最先进的方法相比,我们的方法取得了更好或相当的结果。具体来说,我们在定位方面的平均误差为 1.6-2.0 毫米,在分割方面的平均 Dice 度量为 85%-88%,平均表面距离为 1.3-1.4 毫米。