The Australian E-Health Research Centre, CSIRO ICT Centre, Brisbane, Australia.
Phys Med Biol. 2012 Dec 21;57(24):8357-76. doi: 10.1088/0031-9155/57/24/8357. Epub 2012 Nov 30.
Recent advances in high resolution magnetic resonance (MR) imaging of the spine provide a basis for the automated assessment of intervertebral disc (IVD) and vertebral body (VB) anatomy. High resolution three-dimensional (3D) morphological information contained in these images may be useful for early detection and monitoring of common spine disorders, such as disc degeneration. This work proposes an automated approach to extract the 3D segmentations of lumbar and thoracic IVDs and VBs from MR images using statistical shape analysis and registration of grey level intensity profiles. The algorithm was validated on a dataset of volumetric scans of the thoracolumbar spine of asymptomatic volunteers obtained on a 3T scanner using the relatively new 3D T2-weighted SPACE pulse sequence. Manual segmentations and expert radiological findings of early signs of disc degeneration were used in the validation. There was good agreement between manual and automated segmentation of the IVD and VB volumes with the mean Dice scores of 0.89 ± 0.04 and 0.91 ± 0.02 and mean absolute surface distances of 0.55 ± 0.18 mm and 0.67 ± 0.17 mm respectively. The method compares favourably to existing 3D MR segmentation techniques for VBs. This is the first time IVDs have been automatically segmented from 3D volumetric scans and shape parameters obtained were used in preliminary analyses to accurately classify (100% sensitivity, 98.3% specificity) disc abnormalities associated with early degenerative changes.
近年来,脊柱高分辨率磁共振(MR)成像技术取得了进展,为自动评估椎间盘(IVD)和椎体(VB)解剖结构提供了基础。这些图像中包含的高分辨率三维(3D)形态学信息可能有助于早期发现和监测常见的脊柱疾病,如椎间盘退变。本研究提出了一种自动提取腰椎和胸椎 IVD 和 VB 3D 分割的方法,该方法使用统计形状分析和灰度强度轮廓配准。该算法在一个由无症状志愿者的胸腰椎容积扫描数据集上进行了验证,这些扫描是在 3T 扫描仪上使用相对较新的 3D T2 加权 SPACE 脉冲序列获得的。验证中使用了手动分割和专家放射学发现的早期椎间盘退变迹象。IVD 和 VB 体积的手动和自动分割之间具有良好的一致性,平均 Dice 评分分别为 0.89±0.04 和 0.91±0.02,平均绝对表面距离分别为 0.55±0.18mm 和 0.67±0.17mm。该方法与现有的 VB 3D MR 分割技术相比具有优势。这是首次从 3D 容积扫描中自动分割 IVD,并使用获得的形状参数进行初步分析,以准确分类(100%的灵敏度,98.3%的特异性)与早期退行性变化相关的椎间盘异常。