Suppr超能文献

挥发性有机化合物暴露与风险的极值分析:RIOPA和美国国家健康与营养检查调查数据集的比较

Extreme value analyses of VOC exposures and risks: A comparison of RIOPA and NHANES datasets.

作者信息

Su Feng-Chiao, Jia Chunrong, Batterman Stuart

机构信息

Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Drive, Ann Arbor, MI 48109-2029, USA.

University of Memphis, Memphis, TN, USA.

出版信息

Atmos Environ (1994). 2012 Dec 1;62:97-106. doi: 10.1016/j.atmosenv.2012.06.038.

Abstract

Extreme value theory, which characterizes the behavior of tails of distributions, is potentially well-suited to model exposures and risks of pollutants. In this application, it emphasizes the highest exposures, particularly those that may be high enough to present acute or chronic health risks. The present study examines extreme value distributions of exposures and risks to volatile organic compounds (VOCs). Exposures of 15 different VOCs were measured in the Relationship between Indoor, Outdoor and Personal Air (RIOPA) study, and ten of the same VOCs were measured in the nationally representative National Health and Nutrition Examination Survey (NHANES). Both studies used similar sampling methods and study periods. Using the highest 5 and 10% of measurements, generalized extreme value (GEV), Gumbel and lognormal distributions were fit to each VOC in these two large studies. Health risks were estimated for individual VOCs and three VOC mixtures. Simulated data that matched the three types of distributions were generated and compared to observations to evaluate goodness-of-fit. The tail behavior of exposures, which clearly neither fit normal nor lognormal distributions for most VOCs in RIOPA, was usually best fit by the 3-parameter GEV distribution, and often by the 2-parameter Gumbel distribution. In contrast, lognormal distributions significantly underestimated both the level and likelihood of extrema. Among the RIOPA VOCs, 1,4-dichlorobenzene (1,4-DCB) caused the greatest risks, e.g., for the top 10% extrema, all individuals had risk levels above 10, and 13% of them exceeded 10. NHANES had considerably higher concentrations of all VOCs with two exceptions, methyl tertiary-butyl ether and 1,4-DCB. Differences between these studies can be explained by sampling design, staging, sample demographics, smoking and occupation. This analysis shows that extreme value distributions can represent peak exposures of VOCs, which clearly are neither normally nor lognormally distributed. These exposures have the greatest health significance, and require accurate modeling.

摘要

极值理论描述了分布尾部的行为,可能非常适合用于对污染物的暴露和风险进行建模。在这种应用中,它强调最高暴露水平,特别是那些可能高到足以呈现急性或慢性健康风险的暴露水平。本研究考察了挥发性有机化合物(VOCs)暴露和风险的极值分布。在室内、室外与个人空气关系(RIOPA)研究中测量了15种不同VOCs的暴露水平,在具有全国代表性的国家健康与营养检查调查(NHANES)中测量了其中10种相同VOCs的暴露水平。两项研究都采用了相似的抽样方法和研究周期。利用测量值中最高的5%和10%,在这两项大型研究中对每种VOC拟合了广义极值(GEV)、耿贝尔和对数正态分布。估计了单个VOCs和三种VOC混合物的健康风险。生成了与这三种分布类型匹配的模拟数据,并与观测值进行比较以评估拟合优度。在RIOPA中,大多数VOCs的暴露尾部行为显然既不拟合正态分布也不拟合对数正态分布,通常最适合用三参数GEV分布拟合,也经常能用两参数耿贝尔分布拟合。相比之下,对数正态分布显著低估了极值的水平和可能性。在RIOPA的VOCs中,1,4 - 二氯苯(1,4 - DCB)造成的风险最大,例如,对于前10%的极值,所有个体的风险水平都高于10,其中13%超过了10。除甲基叔丁基醚和1,4 - DCB外,NHANES中所有VOCs的浓度都要高得多。这些研究之间的差异可以通过抽样设计、阶段、样本人口统计学、吸烟和职业来解释。该分析表明,极值分布可以代表VOCs的峰值暴露,这些暴露显然既不呈正态分布也不呈对数正态分布。这些暴露具有最大的健康意义,需要进行准确建模。

相似文献

1
Extreme value analyses of VOC exposures and risks: A comparison of RIOPA and NHANES datasets.
Atmos Environ (1994). 2012 Dec 1;62:97-106. doi: 10.1016/j.atmosenv.2012.06.038.
3
Modeling and analysis of personal exposures to VOC mixtures using copulas.
Environ Int. 2014 Feb;63:236-45. doi: 10.1016/j.envint.2013.11.004. Epub 2013 Dec 12.
4
Distributions of personal VOC exposures: a population-based analysis.
Environ Int. 2008 Oct;34(7):922-31. doi: 10.1016/j.envint.2008.02.002. Epub 2008 Apr 1.
5
Determinants of personal, indoor and outdoor VOC concentrations: an analysis of the RIOPA data.
Environ Res. 2013 Oct;126:192-203. doi: 10.1016/j.envres.2013.08.005. Epub 2013 Sep 10.
7
Trends of VOC exposures among a nationally representative sample: Analysis of the NHANES 1988 through 2004 data sets.
Atmos Environ (1994). 2011 Sep;45(28):4858-4867. doi: 10.1016/j.atmosenv.2011.06.016.
8
Personal and ambient exposures to air toxics in Camden, New Jersey.
Res Rep Health Eff Inst. 2011 Aug(160):3-127; discussion 129-51.
10
Potential air toxics hot spots in truck terminals and cabs.
Res Rep Health Eff Inst. 2012 Dec(172):5-82.

引用本文的文献

1
Associations between specific volatile organic chemical exposures and cardiovascular disease risks: insights from NHANES.
Front Public Health. 2024 May 23;12:1378444. doi: 10.3389/fpubh.2024.1378444. eCollection 2024.
3
Chloroform associated with bone mineral density and bone mineral content in adults: A population-based cross-sectional research.
PLoS One. 2024 Mar 1;19(3):e0290132. doi: 10.1371/journal.pone.0290132. eCollection 2024.
5
Assessing volatile organic compounds exposure and prostate-specific antigen: National Health and Nutrition Examination Survey, 2001-2010.
Front Public Health. 2022 Jul 29;10:957069. doi: 10.3389/fpubh.2022.957069. eCollection 2022.
7
Mixed POT-BM Approach for Modeling Unhealthy Air Pollution Events.
Int J Environ Res Public Health. 2021 Jun 23;18(13):6754. doi: 10.3390/ijerph18136754.
8
Peak Inhalation Exposure Metrics Used in Occupational Epidemiologic and Exposure Studies.
Front Public Health. 2021 Jan 8;8:611693. doi: 10.3389/fpubh.2020.611693. eCollection 2020.
9
Experimental outgassing of toxic chemicals to simulate the characteristics of hazards tainting globally shipped products.
PLoS One. 2017 May 17;12(5):e0177363. doi: 10.1371/journal.pone.0177363. eCollection 2017.

本文引用的文献

1
Extreme Value Estimation Applied to Aerosol Size Distributions and Related Environmental Problems.
J Res Natl Inst Stand Technol. 1994 Jul-Aug;99(4):361-367. doi: 10.6028/jres.099.034.
2
Trends of VOC exposures among a nationally representative sample: Analysis of the NHANES 1988 through 2004 data sets.
Atmos Environ (1994). 2011 Sep;45(28):4858-4867. doi: 10.1016/j.atmosenv.2011.06.016.
3
Variability of indoor and outdoor VOC measurements: an analysis using variance components.
Environ Pollut. 2012 Oct;169:152-9. doi: 10.1016/j.envpol.2011.09.024. Epub 2011 Oct 11.
4
Manganese and lead in children's blood and airborne particulate matter in Durban, South Africa.
Sci Total Environ. 2011 Feb 15;409(6):1058-68. doi: 10.1016/j.scitotenv.2010.12.017. Epub 2011 Jan 5.
5
A tool for determining urban emission characteristics to be used in exposure assessment.
Environ Int. 2010 Apr;36(3):281-9. doi: 10.1016/j.envint.2009.12.009. Epub 2010 Jan 25.
6
Extreme value analysis in biometrics.
Biom J. 2009 Apr;51(2):252-72. doi: 10.1002/bimj.200800239.
7
Distributions of personal VOC exposures: a population-based analysis.
Environ Int. 2008 Oct;34(7):922-31. doi: 10.1016/j.envint.2008.02.002. Epub 2008 Apr 1.
8
Indoor radon distribution in Switzerland: lognormality and Extreme Value Theory.
J Environ Radioact. 2008 Apr;99(4):649-57. doi: 10.1016/j.jenvrad.2007.09.004. Epub 2007 Oct 26.
10
Volatile organic compounds: do they present a risk to our health?
Rev Environ Health. 2007 Jan-Mar;22(1):39-55. doi: 10.1515/reveh.2007.22.1.39.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验