Suppr超能文献

一种用于在RNA序列二级结构预测中寻找最优分割的动态规划算法。

A Dynamic Programming Algorithm for Finding the Optimal Segmentation of an RNA Sequence in Secondary Structure Predictions.

作者信息

Licon Abel, Taufer Michela, Leung Ming-Ying, Johnson Kyle L

机构信息

University of Delaware, Newark, DE.

The University of Texas at El Paso, El Paso, TX.

出版信息

2nd Int Conf Bioinform Comput Biol (2010). 2010 Mar;2010:165-170.

Abstract

In this paper, we present a dynamic programming algorithm that runs in polynomial time and allows us to achieve the optimal, non-overlapping segmentation of a long RNA sequence into segments (chunks). The secondary structure of each chunk is predicted independently, then combined with the structures predicted for the other chunks, to generate a complete secondary structure prediction that is thus a combination of local energy minima. The proposed approach not only is more efficient and accurate than other traditionally used methods that are based on global energy minimizations, but it also allows scientists to overcome computing and storage constraints when trying to predict the secondary structure of long RNA sequences.

摘要

在本文中,我们提出了一种动态规划算法,该算法在多项式时间内运行,使我们能够将长RNA序列最优地、无重叠地分割成片段(块)。每个块的二级结构是独立预测的,然后与为其他块预测的结构相结合,以生成一个完整的二级结构预测,该预测是局部能量最小值的组合。所提出的方法不仅比其他基于全局能量最小化的传统方法更高效、更准确,而且还使科学家在试图预测长RNA序列的二级结构时能够克服计算和存储限制。

相似文献

2
A New Method of RNA Secondary Structure Prediction Based on Convolutional Neural Network and Dynamic Programming.
Front Genet. 2019 May 22;10:467. doi: 10.3389/fgene.2019.00467. eCollection 2019.
3
Secondary Structure Predictions for Long RNA Sequences Based on Inversion Excursions and MapReduce.
IEEE Int Symp Parallel Distrib Process Workshops Phd Forum. 2013 May;2013:520-529. doi: 10.1109/IPDPSW.2013.109.
4
A dynamic programming algorithm for finding alternative RNA secondary structures.
Nucleic Acids Res. 1986 Jan 10;14(1):299-315. doi: 10.1093/nar/14.1.299.
5
A dynamic programming algorithm for RNA structure prediction including pseudoknots.
J Mol Biol. 1999 Feb 5;285(5):2053-68. doi: 10.1006/jmbi.1998.2436.
6
Accurate prediction of secondary structure of tRNAs.
Biochem Biophys Res Commun. 2019 Jan 29;509(1):64-68. doi: 10.1016/j.bbrc.2018.12.042. Epub 2018 Dec 19.
7
Non-parametric Algorithm to Isolate Chunks in Response Sequences.
Front Behav Neurosci. 2016 Sep 21;10:177. doi: 10.3389/fnbeh.2016.00177. eCollection 2016.
8
The influence of gapped positions in multiple sequence alignments on secondary structure prediction methods.
Comput Biol Chem. 2004 Dec;28(5-6):351-66. doi: 10.1016/j.compbiolchem.2004.09.005.
10
Parsing nucleic acid pseudoknotted secondary structure: algorithm and applications.
J Comput Biol. 2007 Jan-Feb;14(1):16-32. doi: 10.1089/cmb.2006.0108.

引用本文的文献

1
On the Verge of Life: Distribution of Nucleotide Sequences in Viral RNAs.
Biosemiotics. 2021;14(2):253-269. doi: 10.1007/s12304-021-09403-5. Epub 2021 Feb 17.
2
LinearFold: linear-time approximate RNA folding by 5'-to-3' dynamic programming and beam search.
Bioinformatics. 2019 Jul 15;35(14):i295-i304. doi: 10.1093/bioinformatics/btz375.

本文引用的文献

1
A practical guide to the art of RNA gene prediction.
Brief Bioinform. 2007 Nov;8(6):396-414. doi: 10.1093/bib/bbm011. Epub 2007 May 4.
2
pknotsRG: RNA pseudoknot folding including near-optimal structures and sliding windows.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W320-4. doi: 10.1093/nar/gkm258. Epub 2007 May 3.
3
CONTRAfold: RNA secondary structure prediction without physics-based models.
Bioinformatics. 2006 Jul 15;22(14):e90-8. doi: 10.1093/bioinformatics/btl246.
4
An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots.
J Comput Chem. 2004 Jul 30;25(10):1295-304. doi: 10.1002/jcc.20057.
5
Mfold web server for nucleic acid folding and hybridization prediction.
Nucleic Acids Res. 2003 Jul 1;31(13):3406-15. doi: 10.1093/nar/gkg595.
6
RNA pseudoknot prediction in energy-based models.
J Comput Biol. 2000;7(3-4):409-27. doi: 10.1089/106652700750050862.
7
A dynamic programming algorithm for RNA structure prediction including pseudoknots.
J Mol Biol. 1999 Feb 5;285(5):2053-68. doi: 10.1006/jmbi.1998.2436.
8
Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding.
Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9218-22. doi: 10.1073/pnas.91.20.9218.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验