Suppr超能文献

一种联合图嵌入和稀疏回归的降维框架。

A framework of joint graph embedding and sparse regression for dimensionality reduction.

出版信息

IEEE Trans Image Process. 2015 Apr;24(4):1341-55. doi: 10.1109/TIP.2015.2405474. Epub 2015 Feb 19.

Abstract

Over the past few decades, a large number of algorithms have been developed for dimensionality reduction. Despite the different motivations of these algorithms, they can be interpreted by a common framework known as graph embedding. In order to explore the significant features of data, some sparse regression algorithms have been proposed based on graph embedding. However, the problem is that these algorithms include two separate steps: (1) embedding learning and (2) sparse regression. Thus their performance is largely determined by the effectiveness of the constructed graph. In this paper, we present a framework by combining the objective functions of graph embedding and sparse regression so that embedding learning and sparse regression can be jointly implemented and optimized, instead of simply using the graph spectral for sparse regression. By the proposed framework, supervised, semisupervised, and unsupervised learning algorithms could be unified. Furthermore, we analyze two situations of the optimization problem for the proposed framework. By adopting an ℓ2,1-norm regularization for the proposed framework, it can perform feature selection and subspace learning simultaneously. Experiments on seven standard databases demonstrate that joint graph embedding and sparse regression method can significantly improve the recognition performance and consistently outperform the sparse regression method.

摘要

在过去的几十年中,已经开发出了大量用于降维的算法。尽管这些算法的动机不同,但它们可以通过一个称为图嵌入的通用框架来解释。为了探索数据的显著特征,已经提出了一些基于图嵌入的稀疏回归算法。然而,问题在于这些算法包括两个独立的步骤:(1)嵌入学习和(2)稀疏回归。因此,它们的性能在很大程度上取决于构建图的有效性。在本文中,我们提出了一个框架,通过将图嵌入和稀疏回归的目标函数结合起来,使得嵌入学习和稀疏回归可以联合实现和优化,而不是简单地使用图谱进行稀疏回归。通过所提出的框架,可以统一监督、半监督和无监督学习算法。此外,我们分析了所提出的框架的优化问题的两种情况。通过对所提出的框架采用 ℓ2,1-范数正则化,可以同时进行特征选择和子空间学习。在七个标准数据库上的实验表明,联合图嵌入和稀疏回归方法可以显著提高识别性能,并始终优于稀疏回归方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验