Tao Jianwen, Dan Yufang, Zhou Di, He Songsong
Institute of Artificial Intelligence Application, Ningbo Polytechnic, Ningbo, China.
Industrial Technological Institute of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou, China.
Front Neurosci. 2022 Apr 27;16:850906. doi: 10.3389/fnins.2022.850906. eCollection 2022.
In practical encephalogram (EEG)-based machine learning, different subjects can be represented by many different EEG patterns, which would, in some extent, degrade the performance of extant subject-independent classifiers obtained from cross-subjects datasets. To this end, in this paper, we present a robust Latent Multi-source Adaptation (LMA) framework for cross-subject/dataset emotion recognition with EEG signals by uncovering multiple domain-invariant latent subspaces. Specifically, by jointly aligning the statistical and semantic distribution discrepancies between each source and target pair, multiple domain-invariant classifiers can be trained collaboratively in a unified framework. This framework can fully utilize the correlated knowledge among multiple sources with a novel low-rank regularization term. Comprehensive experiments on DEAP and SEED datasets demonstrate the superior or comparable performance of LMA with the state of the art in the EEG-based emotion recognition.
在基于脑电图(EEG)的实际机器学习中,不同的受试者可以由许多不同的脑电模式表示,这在一定程度上会降低从跨受试者数据集中获得的现有独立于受试者的分类器的性能。为此,在本文中,我们提出了一种强大的潜在多源适应(LMA)框架,用于通过揭示多个域不变潜在子空间来进行基于脑电信号的跨受试者/数据集情感识别。具体来说,通过联合对齐每个源与目标对之间的统计和语义分布差异,可以在一个统一的框架中协同训练多个域不变分类器。该框架可以通过一个新颖的低秩正则化项充分利用多个源之间的相关知识。在DEAP和SEED数据集上的综合实验表明,LMA在基于脑电的情感识别方面具有与现有技术相当或更优的性能。