Suppr超能文献

基于可能性聚类假设的多模型自适应学习用于基于脑电图的情绪识别

Multi-Model Adaptation Learning With Possibilistic Clustering Assumption for EEG-Based Emotion Recognition.

作者信息

Dan Yufang, Tao Jianwen, Zhou Di

机构信息

Institute of Artificial Intelligence Application, Ningbo Polytechnic, Ningbo, China.

Key Laboratory of 3D Printing Equipment and Manufacturing in Colleges and Universities of Fujian Province, Fujian, China.

出版信息

Front Neurosci. 2022 May 4;16:855421. doi: 10.3389/fnins.2022.855421. eCollection 2022.

Abstract

In machine learning community, graph-based semi-supervised learning (GSSL) approaches have attracted more extensive research due to their elegant mathematical formulation and good performance. However, one of the reasons affecting the performance of the GSSL method is that the training data and test data need to be independently identically distributed (IID); any individual user may show a completely different encephalogram (EEG) data in the same situation. The EEG data may be non-IID. In addition, noise/outlier sensitiveness still exist in GSSL approaches. To these ends, we propose in this paper a novel clustering method based on structure risk minimization model, called multi-model adaptation learning with possibilistic clustering assumption for EEG-based emotion recognition (MA-PCA). It can effectively minimize the influence from the noise/outlier samples based on different EEG-based data distribution in some reproduced kernel Hilbert space. Our main ideas are as follows: (1) reducing the negative impact of noise/outlier patterns through fuzzy entropy regularization, (2) considering the training data and test data are IID and non-IID to obtain a better performance by multi-model adaptation learning, and (3) the algorithm implementation and convergence theorem are also given. A large number of experiments and deep analysis on real DEAP datasets and SEED datasets was carried out. The results show that the MA-PCA method has superior or comparable robustness and generalization performance to EEG-based emotion recognition.

摘要

在机器学习领域,基于图的半监督学习(GSSL)方法因其优雅的数学公式和良好的性能吸引了更广泛的研究。然而,影响GSSL方法性能的一个原因是训练数据和测试数据需要独立同分布(IID);任何个体用户在相同情况下可能会显示出完全不同的脑电图(EEG)数据。EEG数据可能是非IID的。此外,GSSL方法中仍然存在噪声/离群值敏感性问题。为此,我们在本文中提出了一种基于结构风险最小化模型的新型聚类方法,称为基于可能性聚类假设的多模型自适应学习用于基于EEG的情感识别(MA-PCA)。它可以在一些再生核希尔伯特空间中基于不同的基于EEG的数据分布有效地最小化噪声/离群样本的影响。我们的主要思路如下:(1)通过模糊熵正则化减少噪声/离群模式的负面影响,(2)考虑训练数据和测试数据是IID和非IID的情况,通过多模型自适应学习获得更好的性能,(3)还给出了算法实现和收敛定理。对真实的DEAP数据集和SEED数据集进行了大量实验和深入分析。结果表明,MA-PCA方法在基于EEG的情感识别方面具有卓越的或可比的鲁棒性和泛化性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f62/9114636/1acec766ce6d/fnins-16-855421-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验