Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, USA.
California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
Sci Adv. 2023 Jul 14;9(28):eadg5135. doi: 10.1126/sciadv.adg5135. Epub 2023 Jul 12.
The lithium-ion battery is currently the preferred power source for applications ranging from smart phones to electric vehicles. Imaging the chemical reactions governing its function as they happen, with nanoscale spatial resolution and chemical specificity, is a long-standing open problem. Here, we demonstrate operando spectrum imaging of a Li-ion battery anode over multiple charge-discharge cycles using electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). Using ultrathin Li-ion cells, we acquire reference EELS spectra for the various constituents of the solid-electrolyte interphase (SEI) layer and then apply these "chemical fingerprints" to high-resolution, real-space mapping of the corresponding physical structures. We observe the growth of Li and LiH dendrites in the SEI and fingerprint the SEI itself. High spatial- and spectral-resolution operando imaging of the air-sensitive liquid chemistries of the Li-ion cell opens a direct route to understanding the complex, dynamic mechanisms that affect battery safety, capacity, and lifetime.
锂离子电池目前是从智能手机到电动汽车等各种应用的首选电源。以纳米级空间分辨率和化学特异性实时成像其功能所涉及的化学反应,是一个长期存在的开放性问题。在这里,我们在扫描透射电子显微镜 (STEM) 中使用电子能量损失光谱 (EELS) ,对锂离子电池阳极在多个充放电循环中的进行了实时光谱成像。通过使用超薄的锂离子电池,我们获得了固态电解质界面 (SEI) 层中各种成分的参考 EELS 光谱,然后将这些“化学指纹”应用于相应物理结构的高分辨率、实空间映射。我们观察到 SEI 中 Li 和 LiH 枝晶的生长,并对 SEI 本身进行了指纹识别。对锂离子电池的空气敏感液态化学的高空间和光谱分辨率实时光谱成像,为理解影响电池安全性、容量和寿命的复杂动态机制开辟了直接途径。