Bruchmann Julia, Sachsenheimer Kai, Rapp Bastian E, Schwartz Thomas
Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
PLoS One. 2015 Feb 23;10(2):e0117300. doi: 10.1371/journal.pone.0117300. eCollection 2015.
Bacterial colonization of surfaces and interfaces has a major impact on various areas including biotechnology, medicine, food industries, and water technologies. In most of these areas biofilm development has a strong impact on hygiene situations, product quality, and process efficacies. In consequence, biofilm manipulation and prevention is a fundamental issue to avoid adverse impacts. For such scenario online, non-destructive biofilm monitoring systems become important in many technical and industrial applications. This study reports such a system in form of a microfluidic sensor platform based on the combination of electrical impedance spectroscopy and amperometric current measurement, which allows sensitive online measurement of biofilm formation and activity. A total number of 12 parallel fluidic channels enable real-time online screening of various biofilms formed by different Pseudomonas aeruginosa and Stenotrophomonas maltophilia strains and complex mixed population biofilms. Experiments using disinfectant and antibiofilm reagents demonstrate that the biofilm sensor is able to discriminate between inactivation/killing of bacteria and destabilization of biofilm structures. The impedance and amperometric sensor data demonstrated the high dynamics of biofilms as a consequence of distinct responses to chemical treatment strategies. Gene expression of flagellar and fimbrial genes of biofilms grown inside the microfluidic system supported the detected biofilm growth kinetics. Thus, the presented biosensor platform is a qualified tool for assessing biofilm formation in specific environments and for evaluating the effectiveness of antibiofilm treatment strategies.
表面和界面的细菌定殖对包括生物技术、医学、食品工业和水技术在内的各个领域都有重大影响。在这些领域中的大多数,生物膜的形成对卫生状况、产品质量和工艺效率都有很大影响。因此,生物膜的控制和预防是避免不利影响的基本问题。对于这种情况,在线、非破坏性的生物膜监测系统在许多技术和工业应用中变得至关重要。本研究报告了一种基于电阻抗光谱和安培电流测量相结合的微流控传感器平台形式的系统,该系统能够灵敏地在线测量生物膜的形成和活性。总共12个平行的流体通道能够实时在线筛选由不同铜绿假单胞菌和嗜麦芽窄食单胞菌菌株形成的各种生物膜以及复杂的混合群体生物膜。使用消毒剂和抗生物膜试剂的实验表明,生物膜传感器能够区分细菌的失活/杀灭和生物膜结构的破坏。阻抗和安培传感器数据表明,由于对化学处理策略的不同反应,生物膜具有很高的动态变化。在微流控系统中生长的生物膜的鞭毛和菌毛基因的表达支持了检测到的生物膜生长动力学。因此,所提出的生物传感器平台是评估特定环境中生物膜形成和评估抗生物膜治疗策略有效性的合格工具。