Suppr超能文献

莫内林中色氨酸和5-氟色氨酸的皮秒荧光动力学:未掩盖的缓慢水-蛋白质弛豫

Picosecond fluorescence dynamics of tryptophan and 5-fluorotryptophan in monellin: slow water-protein relaxation unmasked.

作者信息

Xu Jianhua, Chen Binbin, Callis Patrik, Muiño Pedro L, Rozeboom Henriëtte, Broos Jaap, Toptygin Dmitri, Brand Ludwig, Knutson Jay R

机构信息

†Optical Spectroscopy Section, Laboratory of Molecular Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States.

§Department of Chemistry, Saint Francis University, Loretto, Pennsylvania 15940, United States.

出版信息

J Phys Chem B. 2015 Mar 19;119(11):4230-9. doi: 10.1021/acs.jpcb.5b01651. Epub 2015 Mar 4.

Abstract

Time dependent fluorescence Stokes (emission wavelength) shifts (TDFSS) from tryptophan (Trp) following sub-picosecond excitation are increasingly used to investigate protein dynamics, most recently enabling active research interest into water dynamics near the surface of proteins. Unlike many fluorescence probes, both the efficiency and the wavelength of Trp fluorescence in proteins are highly sensitive to microenvironment, and Stokes shifts can be dominated by the well-known heterogeneous nature of protein structure, leading to what we call pseudo-TDFSS: shifts that arise from differential decay rates of subpopulations. Here we emphasize a novel, general method that obviates pseudo-TDFSS by replacing Trp by 5-fluorotryptophan (5Ftrp), a fluorescent analogue with higher ionization potential and greatly suppressed electron-transfer quenching. 5FTrp slows and suppresses pseudo-TDFSS, thereby providing a clearer view of genuine relaxation caused by solvent and protein response. This procedure is applied to the sweet-tasting protein monellin which has uniquely been the subject of ultrafast studies in two different laboratories (Peon, J.; et al. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 10964; Xu, J.; et al. J. Am. Chem. Soc. 2006, 128, 1214) that led to disparate interpretations of a 20 ps transient. They differed because of the pseudo-TDFSS present. The current study exploiting special properties of 5FTrp strongly supports the conclusion that both lifetime heterogeneity-based TDFSS and environment relaxation-based TDFSS are present in monellin and 5FTrp-monellin. The original experiments on monellin were most likely dominated by pseudo-TDFSS, whereas, in the present investigation of 5FTrp-monellin, the TDFSS is dominated by relaxation and any residual pseudo-TDFSS is overwhelmed and/or slowed to irrelevance.

摘要

亚皮秒激发后色氨酸(Trp)的时间相关荧光斯托克斯(发射波长)位移(TDFSS)越来越多地用于研究蛋白质动力学,最近引发了对蛋白质表面附近水动力学的积极研究兴趣。与许多荧光探针不同,蛋白质中Trp荧光的效率和波长对微环境都高度敏感,斯托克斯位移可能由蛋白质结构众所周知的异质性主导,导致我们所说的伪TDFSS:由亚群的不同衰减速率引起的位移。在这里,我们强调一种新颖的通用方法,通过用5-氟色氨酸(5Ftrp)取代Trp来消除伪TDFSS,5Ftrp是一种具有更高电离势且大大抑制电子转移猝灭的荧光类似物。5FTrp减缓并抑制伪TDFSS,从而更清晰地展现由溶剂和蛋白质响应引起的真正弛豫。该方法应用于甜味蛋白莫内林,该蛋白在两个不同实验室(Peon,J.等人,《美国国家科学院院刊》,2002年,99卷,10964页;Xu,J.等人,《美国化学会志》,2006年,128卷,1214页)中独特地成为超快研究的对象,这导致了对一个20皮秒瞬态的不同解释。它们的不同是因为存在伪TDFSS。目前利用5FTrp特殊性质的研究有力地支持了这样的结论,即基于寿命异质性的TDFSS和基于环境弛豫的TDFSS在莫内林和5FTrp-莫内林中都存在。最初对莫内林的实验很可能由伪TDFSS主导,而在目前对5FTrp-莫内林的研究中,TDFSS由弛豫主导,任何残留的伪TDFSS都被压倒和/或减缓到无关紧要的程度。

相似文献

1
Picosecond fluorescence dynamics of tryptophan and 5-fluorotryptophan in monellin: slow water-protein relaxation unmasked.
J Phys Chem B. 2015 Mar 19;119(11):4230-9. doi: 10.1021/acs.jpcb.5b01651. Epub 2015 Mar 4.
2
Ultrafast fluorescence dynamics of tryptophan in the proteins monellin and IIAGlc.
J Am Chem Soc. 2006 Feb 1;128(4):1214-21. doi: 10.1021/ja055746h.
4
Quasi-static self-quenching of Trp-X and X-Trp dipeptides in water: ultrafast fluorescence decay.
J Phys Chem B. 2009 Sep 3;113(35):12084-9. doi: 10.1021/jp903078x.
7
Charge invariant protein-water relaxation in GB1 via ultrafast tryptophan fluorescence.
J Am Chem Soc. 2014 Feb 19;136(7):2739-47. doi: 10.1021/ja406126a. Epub 2014 Feb 6.
8
Hydration at the surface of the protein Monellin: dynamics with femtosecond resolution.
Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):10964-9. doi: 10.1073/pnas.162366099. Epub 2002 Aug 12.
9
Fluorescence kinetics of Trp-Trp dipeptide and its derivatives in water via ultrafast fluorescence spectroscopy.
J Photochem Photobiol B. 2015 Aug;149:243-8. doi: 10.1016/j.jphotobiol.2015.06.014. Epub 2015 Jun 17.

引用本文的文献

1
Ultrafast fluorescence dynamics of NADH in aprotic solvents: Quasi-static self-quenching unmasked.
J Photochem Photobiol A Chem. 2023 Mar 1;436. doi: 10.1016/j.jphotochem.2022.114384. Epub 2022 Nov 2.
2
Ultraviolet Superradiance from Mega-Networks of Tryptophan in Biological Architectures.
J Phys Chem B. 2024 May 2;128(17):4035-4046. doi: 10.1021/acs.jpcb.3c07936. Epub 2024 Apr 19.
3
Environment-Driven Coherent Population Transfer Governs the Ultrafast Photophysics of Tryptophan.
J Am Chem Soc. 2022 Jul 20;144(28):12884-12892. doi: 10.1021/jacs.2c04565. Epub 2022 Jul 7.
4
Ultrafast Fluorescence Spectroscopy via Upconversion and Its Applications in Biophysics.
Molecules. 2021 Jan 3;26(1):211. doi: 10.3390/molecules26010211.
5
Femtosecond Fluorescence Spectra of NADH in Solution: Ultrafast Solvation Dynamics.
J Phys Chem B. 2020 Feb 6;124(5):771-776. doi: 10.1021/acs.jpcb.9b10656. Epub 2020 Jan 24.
6
Utility of 5-Cyanotryptophan Fluorescence as a Sensitive Probe of Protein Hydration.
J Phys Chem B. 2016 Feb 11;120(5):936-44. doi: 10.1021/acs.jpcb.5b12233. Epub 2016 Jan 28.
7
Resolution of Two Sub-Populations of Conformers and Their Individual Dynamics by Time Resolved Ensemble Level FRET Measurements.
PLoS One. 2015 Dec 23;10(12):e0143732. doi: 10.1371/journal.pone.0143732. eCollection 2015.
8
Upconversion spectrophotofluorometry.
Methods Mol Biol. 2014;1076:303-19. doi: 10.1007/978-1-62703-649-8_12.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
2
Charge invariant protein-water relaxation in GB1 via ultrafast tryptophan fluorescence.
J Am Chem Soc. 2014 Feb 19;136(7):2739-47. doi: 10.1021/ja406126a. Epub 2014 Feb 6.
3
Biosynthetic incorporation of tryptophan analogs in proteins.
Methods Mol Biol. 2014;1076:359-70. doi: 10.1007/978-1-62703-649-8_15.
4
Insensitivity of tryptophan fluorescence to local charge mutations.
J Phys Chem B. 2013 Aug 22;117(33):9598-605. doi: 10.1021/jp4041716. Epub 2013 Aug 9.
5
An expression system for the efficient incorporation of an expanded set of tryptophan analogues.
Amino Acids. 2013 May;44(5):1329-36. doi: 10.1007/s00726-013-1467-3. Epub 2013 Feb 13.
6
Ultra Pseudo-Stokes Shift Near Infrared Dyes Based on Energy Transfer.
Tetrahedron Lett. 2013 Feb 6;54(6):502-505. doi: 10.1016/j.tetlet.2012.11.060.
7
Validation of response function construction and probing heterogeneous protein hydration by intrinsic tryptophan.
J Phys Chem B. 2012 Nov 15;116(45):13320-30. doi: 10.1021/jp305118n. Epub 2012 Nov 2.
8
Femtosecond conical intersection dynamics of tryptophan in proteins and validation of slowdown of hydration layer dynamics.
J Am Chem Soc. 2012 Oct 10;134(40):16460-3. doi: 10.1021/ja305283j. Epub 2012 Sep 26.
9
Simulations of tryptophan fluorescence dynamics during folding of the villin headpiece.
J Phys Chem B. 2012 Mar 1;116(8):2586-94. doi: 10.1021/jp211217w. Epub 2012 Feb 16.
10
Nanosecond Stokes shift dynamics, dynamical transition, and gigantic reorganization energy of hydrated heme proteins.
J Phys Chem B. 2011 Sep 15;115(36):10715-24. doi: 10.1021/jp200409z. Epub 2011 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验