Maganti Aarthi V, Maier Bernhard, Tersey Sarah A, Sampley Megan L, Mosley Amber L, Özcan Sabire, Pachaiyappan Boobalan, Woster Patrick M, Hunter Chad S, Stein Roland, Mirmira Raghavendra G
From the Department of Cellular and Integrative Physiology.
Department of Pediatrics and the Herman B. Wells Center for Pediatric Research.
J Biol Chem. 2015 Apr 10;290(15):9812-22. doi: 10.1074/jbc.M114.616219. Epub 2015 Feb 24.
The transcription factor Pdx1 is crucial to islet β cell function and regulates target genes in part through interaction with coregulatory factors. Set7/9 is a Lys methyltransferase that interacts with Pdx1. Here we tested the hypothesis that Lys methylation of Pdx1 by Set7/9 augments Pdx1 transcriptional activity. Using mass spectrometry and mutational analysis of purified proteins, we found that Set7/9 methylates the N-terminal residues Lys-123 and Lys-131 of Pdx1. Methylation of these residues occurred only in the context of intact, full-length Pdx1, suggesting a specific requirement of secondary and/or tertiary structural elements for catalysis by Set7/9. Immunoprecipitation assays and mass spectrometric analysis using β cells verified Lys methylation of endogenous Pdx1. Cell-based luciferase reporter assays using wild-type and mutant transgenes revealed a requirement of Pdx1 residue Lys-131, but not Lys-123, for transcriptional augmentation by Set7/9. Lys-131 was not required for high-affinity interactions with DNA in vitro, suggesting that its methylation likely enhances post-DNA binding events. To define the role of Set7/9 in β cell function, we generated mutant mice in which the gene encoding Set7/9 was conditionally deleted in β cells (Set(Δ)β). Set(Δ)β mice exhibited glucose intolerance similar to Pdx1-deficient mice, and their isolated islets showed impaired glucose-stimulated insulin secretion with reductions in expression of Pdx1 target genes. Our results suggest a previously unappreciated role for Set7/9-mediated methylation in the maintenance of Pdx1 activity and β cell function.
转录因子Pdx1对胰岛β细胞功能至关重要,且部分通过与共调节因子相互作用来调控靶基因。Set7/9是一种与Pdx1相互作用的赖氨酸甲基转移酶。在此,我们验证了Set7/9介导的Pdx1赖氨酸甲基化增强Pdx1转录活性这一假说。通过对纯化蛋白进行质谱分析和突变分析,我们发现Set7/9使Pdx1的N端残基赖氨酸-123和赖氨酸-131发生甲基化。这些残基的甲基化仅在完整的全长Pdx1背景下出现,这表明Set7/9催化作用对二级和/或三级结构元件有特定要求。使用β细胞进行的免疫沉淀试验和质谱分析证实了内源性Pdx1的赖氨酸甲基化。利用野生型和突变转基因进行的基于细胞的荧光素酶报告基因试验表明,Set7/9增强转录需要Pdx1残基赖氨酸-131,而非赖氨酸-123。赖氨酸-131对于体外与DNA的高亲和力相互作用并非必需,这表明其甲基化可能增强DNA结合后的事件。为了确定Set7/9在β细胞功能中的作用,我们构建了在β细胞中条件性缺失编码Set7/9基因的突变小鼠(Set(Δ)β)。Set(Δ)β小鼠表现出与Pdx1缺陷小鼠相似的葡萄糖不耐受,其分离的胰岛显示葡萄糖刺激的胰岛素分泌受损,Pdx1靶基因的表达降低。我们的结果表明Set7/9介导的甲基化在维持Pdx1活性和β细胞功能方面具有先前未被认识到的作用。