Zhai Jixian, Zhang Han, Arikit Siwaret, Huang Kun, Nan Guo-Ling, Walbot Virginia, Meyers Blake C
Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716; and.
Department of Biology, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):3146-51. doi: 10.1073/pnas.1418918112. Epub 2015 Feb 23.
Maize anthers, the male reproductive floral organs, express two classes of phased small-interfering RNAs (phasiRNAs). PhasiRNA precursors are transcribed by RNA polymerase II and map to low-copy, intergenic regions similar to PIWI-interacting RNAs (piRNAs) in mammalian testis. From 10 sequential cohorts of staged maize anthers plus mature pollen we find that 21-nt phased siRNAs from 463 loci appear abruptly after germinal and initial somatic cell fate specification and then diminish, whereas 24-nt phasiRNAs from 176 loci coordinately accumulate during meiosis and persist as anther somatic cells mature and haploid gametophytes differentiate into pollen. Male-sterile ocl4 anthers defective in epidermal signaling lack 21-nt phasiRNAs. Male-sterile mutants with subepidermal defects--mac1 (excess meiocytes), ms23 (defective pretapetal cells), and msca1 (no normal soma or meiocytes)--lack 24-nt phasiRNAs. ameiotic1 mutants (normal soma, no meiosis) accumulate both 21-nt and 24-nt phasiRNAs, ruling out meiotic cells as a source or regulator of phasiRNA biogenesis. By in situ hybridization, miR2118 triggers of 21-nt phasiRNA biogenesis localize to epidermis; however, 21-PHAS precursors and 21-nt phasiRNAs are abundant subepidermally. The miR2275 trigger, 24-PHAS precursors, and 24-nt phasiRNAs all accumulate preferentially in tapetum and meiocytes. Therefore, each phasiRNA type exhibits independent spatiotemporal regulation with 21-nt premeiotic phasiRNAs dependent on epidermal and 24-nt meiotic phasiRNAs dependent on tapetal cell differentiation. Maize phasiRNAs and mammalian piRNAs illustrate putative convergent evolution of small RNAs in male reproduction.
玉米花药作为雄性生殖花器官,表达两类阶段性小干扰RNA(phasiRNAs)。PhasiRNA前体由RNA聚合酶II转录,定位于低拷贝的基因间区域,类似于哺乳动物睾丸中的PIWI相互作用RNA(piRNAs)。从10个连续阶段的玉米花药加上成熟花粉样本中,我们发现来自463个位点的21-nt阶段性siRNAs在生殖细胞和初始体细胞命运确定后突然出现,随后减少,而来自176个位点的24-nt phasiRNAs在减数分裂期间协同积累,并在花药体细胞成熟和单倍体配子体分化为花粉时持续存在。在表皮信号传导方面有缺陷的雄性不育ocl4花药缺乏21-nt phasiRNAs。具有表皮下缺陷的雄性不育突变体——mac1(减数分裂细胞过多)、ms23(绒毡层前体细胞有缺陷)和msca1(无正常体细胞或减数分裂细胞)——缺乏24-nt phasiRNAs。减数分裂缺失突变体(正常体细胞,无减数分裂)同时积累21-nt和24-nt phasiRNAs,排除了减数分裂细胞作为phasiRNA生物合成的来源或调节因子。通过原位杂交,触发21-nt phasiRNA生物合成的miR2118定位于表皮;然而,21-PHAS前体和21-nt phasiRNAs在表皮下大量存在。miR2275触发因子、24-PHAS前体和24-nt phasiRNAs都优先在绒毡层和减数分裂细胞中积累。因此,每种phasiRNA类型都表现出独立的时空调节,减数分裂前的21-nt phasiRNAs依赖于表皮,减数分裂期间的24-nt phasiRNAs依赖于绒毡层细胞分化。玉米phasiRNAs和哺乳动物piRNAs说明了雄性生殖中小RNA的假定趋同进化。