Suppr超能文献

用于控制基于液滴的生物传感平台中离子环境的电子脱盐

Electronic desalting for controlling the ionic environment in droplet-based biosensing platforms.

作者信息

Swaminathan Vikhram Vilasur, Dak Piyush, Reddy Bobby, Salm Eric, Duarte-Guevara Carlos, Zhong Yu, Fischer Andrew, Liu Yi-Shao, Alam Muhammad A, Bashir Rashid

机构信息

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, USA.

School of Electrical and Computer Engineering, Purdue University , West Lafayette, Indiana 47907, USA.

出版信息

Appl Phys Lett. 2015 Feb 2;106(5):053105. doi: 10.1063/1.4907351.

Abstract

The ability to control the ionic environment in saline waters and aqueous electrolytes is useful for desalination as well as electronic biosensing. We demonstrate a method of electronic desalting at micro-scale through on-chip micro electrodes. We show that, while desalting is limited in bulk solutions with unlimited availability of salts, significant desalting of ≥1 mM solutions can be achieved in sub-nanoliter volume droplets with diameters of ∼250 m. Within these droplets, by using platinum-black microelectrodes and electrochemical surface treatments, we can enhance the electrode surface area to achieve >99% and 41% salt removal in 1 mM and 10 mM salt concentrations, respectively. Through self-consistent simulations and experimental measurements, we demonstrate that conventional double-layer theory over-predicts the desalting capacity and, hence, cannot be used to model systems that are mass limited or undergoing significant salt removal from the bulk. Our results will provide a better understanding of capacitive desalination, as well as a method for salt manipulation in high-throughput droplet-based microfluidic sensing platforms.

摘要

控制盐水和水性电解质中离子环境的能力对海水淡化以及电子生物传感都很有用。我们展示了一种通过芯片上的微电极进行微尺度电子脱盐的方法。我们表明,虽然在盐供应不受限的本体溶液中脱盐受到限制,但在直径约为250微米的亚纳升体积液滴中,可以实现对≥1 mM溶液的显著脱盐。在这些液滴中,通过使用铂黑微电极和电化学表面处理,我们可以增大电极表面积,在1 mM和10 mM盐浓度下分别实现>99%和41%的盐分去除。通过自洽模拟和实验测量,我们证明传统的双层理论对脱盐能力预测过高,因此不能用于对受质量限制或正在从本体中大量去除盐分的系统进行建模。我们的结果将有助于更好地理解电容式脱盐,以及为基于高通量液滴的微流控传感平台中的盐分操控提供一种方法。

相似文献

1
Electronic desalting for controlling the ionic environment in droplet-based biosensing platforms.
Appl Phys Lett. 2015 Feb 2;106(5):053105. doi: 10.1063/1.4907351.
2
Carbon Black Flow Electrode Enhanced Electrochemical Desalination Using Single-Cycle Operation.
Environ Sci Technol. 2020 Jan 21;54(2):1177-1185. doi: 10.1021/acs.est.9b04823. Epub 2019 Dec 30.
3
Electrokinetic Desalting and Salting of Water-in-Oil Droplets.
Anal Chem. 2024 Jun 18;96(24):9876-9884. doi: 10.1021/acs.analchem.4c00534. Epub 2024 Jun 6.
4
Flow-Electrode Capacitive Deionization Using an Aqueous Electrolyte with a High Salt Concentration.
Environ Sci Technol. 2016 Jun 7;50(11):5892-9. doi: 10.1021/acs.est.5b04640. Epub 2016 May 18.
5
6
[Rapid generation of double-layer emulsion droplets based on microfluidic chip].
Sheng Wu Gong Cheng Xue Bao. 2020 Jul 25;36(7):1405-1413. doi: 10.13345/j.cjb.190525.
8
Using mesoporous carbon electrodes for brackish water desalination.
Water Res. 2008 Apr;42(8-9):2340-8. doi: 10.1016/j.watres.2007.12.022. Epub 2008 Jan 4.
9
A droplet-to-digital (D2D) microfluidic device for single cell assays.
Lab Chip. 2015 Jan 7;15(1):225-36. doi: 10.1039/c4lc00794h.
10
On demand nanoliter-scale microfluidic droplet generation, injection, and mixing using a passive microfluidic device.
Biomicrofluidics. 2015 Feb 12;9(1):014119. doi: 10.1063/1.4907895. eCollection 2015 Jan.

本文引用的文献

1
Ultralocalized thermal reactions in subnanoliter droplets-in-air.
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3310-5. doi: 10.1073/pnas.1219639110. Epub 2013 Feb 11.
2
Highly sensitive and reusable Pt-black microfluidic electrodes for long-term electrochemical sensing.
Biosens Bioelectron. 2010 Oct 15;26(2):682-8. doi: 10.1016/j.bios.2010.06.064. Epub 2010 Jul 23.
3
Materials for electrochemical capacitors.
Nat Mater. 2008 Nov;7(11):845-54. doi: 10.1038/nmat2297.
4
Screening-limited response of nanobiosensors.
Nano Lett. 2008 May;8(5):1281-5. doi: 10.1021/nl072593i. Epub 2008 Apr 3.
5
Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Feb;75(2 Pt 1):021502. doi: 10.1103/PhysRevE.75.021502. Epub 2007 Feb 16.
6
Dielectric properties of glycerol/water mixtures at temperatures between 10 and 50 degrees C.
J Chem Phys. 2006 Apr 14;124(14):144512. doi: 10.1063/1.2188391.
7
CMOS microelectrode array for the monitoring of electrogenic cells.
Biosens Bioelectron. 2004 Sep 15;20(2):358-66. doi: 10.1016/j.bios.2004.02.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验