Nair Pradeep R, Alam Muhammad A
School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
Nano Lett. 2008 May;8(5):1281-5. doi: 10.1021/nl072593i. Epub 2008 Apr 3.
Despite tremendous potential of highly sensitive electronic detection of biomolecules by nanoscale biosensors for genomics and proteomic applications, many aspects of experimentally observed sensor response (S) are difficult to understand within isolated theoretical frameworks of kinetic response or electrolyte screening. In this paper, we combine analytic solutions of Poisson-Boltzmann and diffusion-capture equations to show that the electrostatic screening within an ionic environment limits the response of nanobiosensor such that S(t) approximately c1(ln(rho0) - ln(I0)/2 + ln(t)/ D F + c2[pH]) + c3 where c i are geometry-dependent constants, rho0 is the concentration of target molecules, I0 the salt concentration, and D F the fractal dimension of sensor surface. Our analysis provides a coherent theoretical interpretation of a wide variety of puzzling experimental data that have so far defied intuitive explanation.
尽管纳米级生物传感器对生物分子进行高灵敏度电子检测在基因组学和蛋白质组学应用方面具有巨大潜力,但在动力学响应或电解质筛选的孤立理论框架内,实验观察到的传感器响应(S)的许多方面都难以理解。在本文中,我们结合泊松 - 玻尔兹曼方程和扩散捕获方程的解析解,表明离子环境中的静电筛选限制了纳米生物传感器的响应,使得S(t) 近似为c1(ln(rho0) - ln(I0)/2 + ln(t)/ D F + c2[pH]) + c3,其中ci是与几何形状相关的常数,rho0是目标分子的浓度,I0是盐浓度,DF是传感器表面的分形维数。我们的分析为迄今为止难以直观解释的各种令人困惑的实验数据提供了连贯的理论解释。