Heer F, Franks W, Blau A, Taschini S, Ziegler C, Hierlemann A, Baltes H
Physical Electronics Laboratory, ETH Zurich, 8093 Zurich, Switzerland.
Biosens Bioelectron. 2004 Sep 15;20(2):358-66. doi: 10.1016/j.bios.2004.02.006.
Signal degradation and an array size dictated by the number of available interconnects are the two main limitations inherent to standalone microelectrode arrays (MEAs). A new biochip consisting of an array of microelectrodes with fully-integrated analog and digital circuitry realized in an industrial CMOS process addresses these issues. The device is capable of on-chip signal filtering for improved signal-to-noise ratio (SNR), on-chip analog and digital conversion, and multiplexing, thereby facilitating simultaneous stimulation and recording of electrogenic cell activity. The designed electrode pitch of 250 microm significantly limits the space available for circuitry: a repeated unit of circuitry associated with each electrode comprises a stimulation buffer and a bandpass filter for readout. The bandpass filter has corner frequencies of 100 Hz and 50 kHz, and a gain of 1000. Stimulation voltages are generated from an 8-bit digital signal and converted to an analog signal at a frequency of 120 kHz. Functionality of the read-out circuitry is demonstrated by the measurement of cardiomyocyte activity. The microelectrode is realized in a shifted design for flexibility and biocompatibility. Several microelectrode materials (platinum, platinum black and titanium nitride) have been electrically characterized. An equivalent circuit model, where each parameter represents a macroscopic physical quantity contributing to the interface impedance, has been successfully fitted to experimental results.
信号退化以及由可用互连数量决定的阵列大小是独立微电极阵列(MEA)固有的两个主要限制因素。一种新型生物芯片由采用工业CMOS工艺实现的具有完全集成模拟和数字电路的微电极阵列组成,可解决这些问题。该器件能够进行片上信号滤波以提高信噪比(SNR),进行片上模拟和数字转换以及多路复用,从而便于同时刺激和记录电活动细胞的活动。设计的250微米电极间距显著限制了电路可用空间:与每个电极相关的电路重复单元包括一个刺激缓冲器和一个用于读出的带通滤波器。该带通滤波器的截止频率为100 Hz和50 kHz,增益为1000。刺激电压由一个8位数字信号产生,并以120 kHz的频率转换为模拟信号。通过测量心肌细胞活性证明了读出电路的功能。微电极采用移位设计以实现灵活性和生物相容性。已经对几种微电极材料(铂、铂黑和氮化钛)进行了电学表征。一个等效电路模型已成功拟合到实验结果,其中每个参数代表对界面阻抗有贡献的宏观物理量。