Suppr超能文献

基于原型向量机的图半监督学习的扩展。

Scaling up graph-based semisupervised learning via prototype vector machines.

出版信息

IEEE Trans Neural Netw Learn Syst. 2015 Mar;26(3):444-57. doi: 10.1109/TNNLS.2014.2315526.

Abstract

When the amount of labeled data are limited, semisupervised learning can improve the learner's performance by also using the often easily available unlabeled data. In particular, a popular approach requires the learned function to be smooth on the underlying data manifold. By approximating this manifold as a weighted graph, such graph-based techniques can often achieve state-of-the-art performance. However, their high time and space complexities make them less attractive on large data sets. In this paper, we propose to scale up graph-based semisupervised learning using a set of sparse prototypes derived from the data. These prototypes serve as a small set of data representatives, which can be used to approximate the graph-based regularizer and to control model complexity. Consequently, both training and testing become much more efficient. Moreover, when the Gaussian kernel is used to define the graph affinity, a simple and principled method to select the prototypes can be obtained. Experiments on a number of real-world data sets demonstrate encouraging performance and scaling properties of the proposed approach. It also compares favorably with models learned via l1 -regularization at the same level of model sparsity. These results demonstrate the efficacy of the proposed approach in producing highly parsimonious and accurate models for semisupervised learning.

摘要

当标记数据的数量有限时,半监督学习可以通过同时使用通常易于获得的未标记数据来提高学习者的性能。特别是,一种流行的方法要求学习到的函数在底层数据流形上是平滑的。通过将这个流形近似为一个加权图,基于图的技术通常可以实现最先进的性能。然而,它们的高时间和空间复杂度使得它们在大数据集上的吸引力降低。在本文中,我们提出了一种使用从数据中提取的一组稀疏原型来扩展基于图的半监督学习的方法。这些原型作为数据的一个小的代表集合,可以用来近似基于图的正则化项,并控制模型的复杂度。因此,训练和测试都变得更加高效。此外,当使用高斯核来定义图的相似性时,可以得到一种简单而有原则的选择原型的方法。在一些真实世界数据集上的实验表明了所提出方法的令人鼓舞的性能和扩展特性。它也与在相同模型稀疏性水平下通过 l1 正则化学习的模型进行了比较,结果表明了所提出的方法在生成简洁而准确的半监督学习模型方面的有效性。

相似文献

1
Scaling up graph-based semisupervised learning via prototype vector machines.基于原型向量机的图半监督学习的扩展。
IEEE Trans Neural Netw Learn Syst. 2015 Mar;26(3):444-57. doi: 10.1109/TNNLS.2014.2315526.
4
Joint Label Inference and Discriminant Embedding.联合标签推理与判别式嵌入
IEEE Trans Neural Netw Learn Syst. 2022 Sep;33(9):4413-4423. doi: 10.1109/TNNLS.2021.3057270. Epub 2022 Aug 31.
7
Graph-based semisupervised learning.基于图的半监督学习。
IEEE Trans Pattern Anal Mach Intell. 2008 Jan;30(1):174-9. doi: 10.1109/TPAMI.2007.70765.
8
Semisupervised Feature Selection via Structured Manifold Learning.基于结构流形学习的半监督特征选择。
IEEE Trans Cybern. 2022 Jul;52(7):5756-5766. doi: 10.1109/TCYB.2021.3052847. Epub 2022 Jul 4.
9
Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.基于切空间内在流形正则化的半监督支持向量机。
IEEE Trans Neural Netw Learn Syst. 2016 Sep;27(9):1827-39. doi: 10.1109/TNNLS.2015.2461009. Epub 2015 Aug 10.
10
A Semisupervised Recurrent Convolutional Attention Model for Human Activity Recognition.半监督循环卷积注意模型在人体活动识别中的应用
IEEE Trans Neural Netw Learn Syst. 2020 May;31(5):1747-1756. doi: 10.1109/TNNLS.2019.2927224. Epub 2019 Jul 19.

本文引用的文献

1
Semi-supervised dimension reduction using trace ratio criterion.基于迹比准则的半监督维数约简。
IEEE Trans Neural Netw Learn Syst. 2012 Mar;23(3):519-26. doi: 10.1109/TNNLS.2011.2178037.
2
Semisupervised classification with cluster regularization.基于聚类正则化的半监督分类。
IEEE Trans Neural Netw Learn Syst. 2012 Nov;23(11):1779-92. doi: 10.1109/TNNLS.2012.2214488.
3
Laplacian embedded regression for scalable manifold regularization.拉普拉斯嵌入回归的可扩展流形正则化。
IEEE Trans Neural Netw Learn Syst. 2012 Jun;23(6):902-15. doi: 10.1109/TNNLS.2012.2190420.
4
New semi-supervised classification method based on modified cluster assumption.基于改进聚类假设的新半监督分类方法。
IEEE Trans Neural Netw Learn Syst. 2012 May;23(5):689-702. doi: 10.1109/TNNLS.2012.2186825.
6
Discriminative semi-supervised feature selection via manifold regularization.基于流形正则化的判别式半监督特征选择
IEEE Trans Neural Netw. 2010 Jul;21(7):1033-47. doi: 10.1109/TNN.2010.2047114. Epub 2010 Jun 21.
7
Spectral grouping using the Nyström method.使用Nyström方法进行谱分组。
IEEE Trans Pattern Anal Mach Intell. 2004 Feb;26(2):214-25. doi: 10.1109/TPAMI.2004.1262185.
8
Nonlinear dimensionality reduction by locally linear embedding.通过局部线性嵌入进行非线性降维
Science. 2000 Dec 22;290(5500):2323-6. doi: 10.1126/science.290.5500.2323.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验