Suppr超能文献

用于半监督在线极限学习机的原型正则化流形正则化技术。

Prototype Regularized Manifold Regularization Technique for Semi-Supervised Online Extreme Learning Machine.

机构信息

School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Iskandar Puteri 81310, Malaysia.

College of Computer Science and Engineering, Taibah University, Medina 42353, Saudi Arabia.

出版信息

Sensors (Basel). 2022 Apr 19;22(9):3113. doi: 10.3390/s22093113.

Abstract

Data streaming applications such as the Internet of Things (IoT) require processing or predicting from sequential data from various sensors. However, most of the data are unlabeled, making applying fully supervised learning algorithms impossible. The online manifold regularization approach allows sequential learning from partially labeled data, which is useful for sequential learning in environments with scarcely labeled data. Unfortunately, the manifold regularization technique does not work out of the box as it requires determining the radial basis function (RBF) kernel width parameter. The RBF kernel width parameter directly impacts the performance as it is used to inform the model to which class each piece of data most likely belongs. The width parameter is often determined off-line via hyperparameter search, where a vast amount of labeled data is required. Therefore, it limits its utility in applications where it is difficult to collect a great deal of labeled data, such as data stream mining. To address this issue, we proposed eliminating the RBF kernel from the manifold regularization technique altogether by combining the manifold regularization technique with a prototype learning method, which uses a finite set of prototypes to approximate the entire data set. Compared to other manifold regularization approaches, this approach instead queries the prototype-based learner to find the most similar samples for each sample instead of relying on the RBF kernel. Thus, it no longer necessitates the RBF kernel, which improves its practicality. The proposed approach can learn faster and achieve a higher classification performance than other manifold regularization techniques based on experiments on benchmark data sets. Results showed that the proposed approach can perform well even without using the RBF kernel, which improves the practicality of manifold regularization techniques for semi-supervised learning.

摘要

数据流应用程序,如物联网 (IoT),需要处理或预测来自各种传感器的顺序数据。然而,大多数数据都是未标记的,这使得完全监督学习算法无法应用。在线流形正则化方法允许从部分标记的数据中进行顺序学习,这对于在标记数据很少的环境中进行顺序学习很有用。不幸的是,流形正则化技术不能直接使用,因为它需要确定径向基函数 (RBF) 核宽度参数。RBF 核宽度参数直接影响性能,因为它用于告知模型每个数据点最有可能属于哪个类别。该宽度参数通常通过超参数搜索离线确定,这需要大量标记数据。因此,它限制了其在难以收集大量标记数据的应用中的实用性,例如数据流挖掘。为了解决这个问题,我们提出通过将流形正则化技术与原型学习方法相结合来完全消除 RBF 核,该方法使用有限数量的原型来近似整个数据集。与其他流形正则化方法相比,该方法不是依赖 RBF 核,而是查询基于原型的学习者来为每个样本找到最相似的样本。因此,它不再需要 RBF 核,从而提高了其实用性。与基于基准数据集的实验相比,所提出的方法可以更快地学习并实现更高的分类性能。结果表明,即使不使用 RBF 核,所提出的方法也能很好地工作,从而提高了流形正则化技术在半监督学习中的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fd1/9101820/5ee71f982780/sensors-22-03113-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验