Suppr超能文献

半监督循环卷积注意模型在人体活动识别中的应用

A Semisupervised Recurrent Convolutional Attention Model for Human Activity Recognition.

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 May;31(5):1747-1756. doi: 10.1109/TNNLS.2019.2927224. Epub 2019 Jul 19.

Abstract

Recent years have witnessed the success of deep learning methods in human activity recognition (HAR). The longstanding shortage of labeled activity data inherently calls for a plethora of semisupervised learning methods, and one of the most challenging and common issues with semisupervised learning is the imbalanced distribution of labeled data over classes. Although the problem has long existed in broad real-world HAR applications, it is rarely explored in the literature. In this paper, we propose a semisupervised deep model for imbalanced activity recognition from multimodal wearable sensory data. We aim to address not only the challenges of multimodal sensor data (e.g., interperson variability and interclass similarity) but also the limited labeled data and class-imbalance issues simultaneously. In particular, we propose a pattern-balanced semisupervised framework to extract and preserve diverse latent patterns of activities. Furthermore, we exploit the independence of multi-modalities of sensory data and attentively identify salient regions that are indicative of human activities from inputs by our recurrent convolutional attention networks. Our experimental results demonstrate that the proposed model achieves a competitive performance compared to a multitude of state-of-the-art methods, both semisupervised and supervised ones, with 10% labeled training data. The results also show the robustness of our method over imbalanced, small training data sets.

摘要

近年来,深度学习方法在人体活动识别(HAR)中取得了成功。长期以来,标记活动数据的不足本质上需要大量的半监督学习方法,而半监督学习中最具挑战性和常见的问题之一是类之间标记数据的不平衡分布。尽管这个问题在广泛的真实 HAR 应用中早已存在,但在文献中很少被探讨。在本文中,我们提出了一种从多模态可穿戴传感器数据中进行不平衡活动识别的半监督深度模型。我们的目标不仅是解决多模态传感器数据(例如,个体间变异性和类内相似性)的挑战,而且还要同时解决有限的标记数据和类不平衡问题。具体来说,我们提出了一种模式平衡的半监督框架,以提取和保留活动的多样化潜在模式。此外,我们利用传感器数据的多模态独立性,并通过我们的递归卷积注意力网络,从输入中精心识别出表示人类活动的显著区域。我们的实验结果表明,与大量的最先进的方法(包括半监督和监督方法)相比,我们的模型在 10%的标记训练数据下具有竞争力的性能。结果还表明,我们的方法在不平衡、小训练数据集上具有稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验